wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: NETLAB Reference Documentation
wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: NETLAB Online Reference Documentation
wolffd@0: Welcome to the NETLAB online reference documentation.
wolffd@0: The NETLAB simulation software is designed to provide all the tools necessary
wolffd@0: for principled and theoretically well founded application development. The
wolffd@0: NETLAB library is based on the approach and techniques described in Neural
wolffd@0: Networks for Pattern Recognition (Bishop, 1995). The library includes software
wolffd@0: implementations of a wide range of data analysis techniques, many of which are
wolffd@0: not widely available, and are rarely, if ever, included in standard neural
wolffd@0: network simulation packages.
wolffd@0: The online reference documentation provides direct hypertext links to specific Netlab function descriptions.
wolffd@0:
If you have any comments or problems to report, please contact Ian Nabney (i.t.nabney@aston.ac.uk) or Christopher Bishop (c.m.bishop@aston.ac.uk).
Index
wolffd@0:
wolffd@0: An alphabetic list of functions in Netlab.
wolffd@0:
wolffd@0: -
wolffd@0:
conffig -
wolffd@0: Display a confusion matrix.
wolffd@0:
-
wolffd@0:
confmat -
wolffd@0: Compute a confusion matrix.
wolffd@0:
-
wolffd@0:
conjgrad -
wolffd@0: Conjugate gradients optimization.
wolffd@0:
-
wolffd@0:
consist -
wolffd@0: Check that arguments are consistent.
wolffd@0:
-
wolffd@0:
convertoldnet -
wolffd@0: Convert pre-2.3 release MLP and MDN nets to new format
wolffd@0:
-
wolffd@0:
datread -
wolffd@0: Read data from an ascii file.
wolffd@0:
-
wolffd@0:
datwrite -
wolffd@0: Write data to ascii file.
wolffd@0:
-
wolffd@0:
dem2ddat -
wolffd@0: Generates two dimensional data for demos.
wolffd@0:
-
wolffd@0:
demard -
wolffd@0: Automatic relevance determination using the MLP.
wolffd@0:
-
wolffd@0:
demev1 -
wolffd@0: Demonstrate Bayesian regression for the MLP.
wolffd@0:
-
wolffd@0:
demev2 -
wolffd@0: Demonstrate Bayesian classification for the MLP.
wolffd@0:
-
wolffd@0:
demev3 -
wolffd@0: Demonstrate Bayesian regression for the RBF.
wolffd@0:
-
wolffd@0:
demgauss -
wolffd@0: Demonstrate sampling from Gaussian distributions.
wolffd@0:
-
wolffd@0:
demglm1 -
wolffd@0: Demonstrate simple classification using a generalized linear model.
wolffd@0:
-
wolffd@0:
demglm2 -
wolffd@0: Demonstrate simple classification using a generalized linear model.
wolffd@0:
-
wolffd@0:
demgmm1 -
wolffd@0: Demonstrate density modelling with a Gaussian mixture model.
wolffd@0:
-
wolffd@0:
demgmm3 -
wolffd@0: Demonstrate density modelling with a Gaussian mixture model.
wolffd@0:
-
wolffd@0:
demgmm4 -
wolffd@0: Demonstrate density modelling with a Gaussian mixture model.
wolffd@0:
-
wolffd@0:
demgmm5 -
wolffd@0: Demonstrate density modelling with a PPCA mixture model.
wolffd@0:
-
wolffd@0:
demgp -
wolffd@0: Demonstrate simple regression using a Gaussian Process.
wolffd@0:
-
wolffd@0:
demgpard -
wolffd@0: Demonstrate ARD using a Gaussian Process.
wolffd@0:
-
wolffd@0:
demgpot -
wolffd@0: Computes the gradient of the negative log likelihood for a mixture model.
wolffd@0:
-
wolffd@0:
demgtm1 -
wolffd@0: Demonstrate EM for GTM.
wolffd@0:
-
wolffd@0:
demgtm2 -
wolffd@0: Demonstrate GTM for visualisation.
wolffd@0:
-
wolffd@0:
demhint -
wolffd@0: Demonstration of Hinton diagram for 2-layer feed-forward network.
wolffd@0:
-
wolffd@0:
demhmc1 -
wolffd@0: Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians.
wolffd@0:
-
wolffd@0:
demhmc2 -
wolffd@0: Demonstrate Bayesian regression with Hybrid Monte Carlo sampling.
wolffd@0:
-
wolffd@0:
demhmc3 -
wolffd@0: Demonstrate Bayesian regression with Hybrid Monte Carlo sampling.
wolffd@0:
-
wolffd@0:
demkmean -
wolffd@0: Demonstrate simple clustering model trained with K-means.
wolffd@0:
-
wolffd@0:
demknn1 -
wolffd@0: Demonstrate nearest neighbour classifier.
wolffd@0:
-
wolffd@0:
demmdn1 -
wolffd@0: Demonstrate fitting a multi-valued function using a Mixture Density Network.
wolffd@0:
-
wolffd@0:
demmet1 -
wolffd@0: Demonstrate Markov Chain Monte Carlo sampling on a Gaussian.
wolffd@0:
-
wolffd@0:
demmlp1 -
wolffd@0: Demonstrate simple regression using a multi-layer perceptron
wolffd@0:
-
wolffd@0:
demmlp2 -
wolffd@0: Demonstrate simple classification using a multi-layer perceptron
wolffd@0:
-
wolffd@0:
demnlab -
wolffd@0: A front-end Graphical User Interface to the demos
wolffd@0:
-
wolffd@0:
demns1 -
wolffd@0: Demonstrate Neuroscale for visualisation.
wolffd@0:
-
wolffd@0:
demolgd1 -
wolffd@0: Demonstrate simple MLP optimisation with on-line gradient descent
wolffd@0:
-
wolffd@0:
demopt1 -
wolffd@0: Demonstrate different optimisers on Rosenbrock's function.
wolffd@0:
-
wolffd@0:
dempot -
wolffd@0: Computes the negative log likelihood for a mixture model.
wolffd@0:
-
wolffd@0:
demprgp -
wolffd@0: Demonstrate sampling from a Gaussian Process prior.
wolffd@0:
-
wolffd@0:
demprior -
wolffd@0: Demonstrate sampling from a multi-parameter Gaussian prior.
wolffd@0:
-
wolffd@0:
demrbf1 -
wolffd@0: Demonstrate simple regression using a radial basis function network.
wolffd@0:
-
wolffd@0:
demsom1 -
wolffd@0: Demonstrate SOM for visualisation.
wolffd@0:
-
wolffd@0:
demtrain -
wolffd@0: Demonstrate training of MLP network.
wolffd@0:
-
wolffd@0:
dist2 -
wolffd@0: Calculates squared distance between two sets of points.
wolffd@0:
-
wolffd@0:
eigdec -
wolffd@0: Sorted eigendecomposition
wolffd@0:
-
wolffd@0:
errbayes -
wolffd@0: Evaluate Bayesian error function for network.
wolffd@0:
-
wolffd@0:
evidence -
wolffd@0: Re-estimate hyperparameters using evidence approximation.
wolffd@0:
-
wolffd@0:
fevbayes -
wolffd@0: Evaluate Bayesian regularisation for network forward propagation.
wolffd@0:
-
wolffd@0:
gauss -
wolffd@0: Evaluate a Gaussian distribution.
wolffd@0:
-
wolffd@0:
gbayes -
wolffd@0: Evaluate gradient of Bayesian error function for network.
wolffd@0:
-
wolffd@0:
glm -
wolffd@0: Create a generalized linear model.
wolffd@0:
-
wolffd@0:
glmderiv -
wolffd@0: Evaluate derivatives of GLM outputs with respect to weights.
wolffd@0:
-
wolffd@0:
glmerr -
wolffd@0: Evaluate error function for generalized linear model.
wolffd@0:
-
wolffd@0:
glmevfwd -
wolffd@0: Forward propagation with evidence for GLM
wolffd@0:
-
wolffd@0:
glmfwd -
wolffd@0: Forward propagation through generalized linear model.
wolffd@0:
-
wolffd@0:
glmgrad -
wolffd@0: Evaluate gradient of error function for generalized linear model.
wolffd@0:
-
wolffd@0:
glmhess -
wolffd@0: Evaluate the Hessian matrix for a generalised linear model.
wolffd@0:
-
wolffd@0:
glminit -
wolffd@0: Initialise the weights in a generalized linear model.
wolffd@0:
-
wolffd@0:
glmpak -
wolffd@0: Combines weights and biases into one weights vector.
wolffd@0:
-
wolffd@0:
glmtrain -
wolffd@0: Specialised training of generalized linear model
wolffd@0:
-
wolffd@0:
glmunpak -
wolffd@0: Separates weights vector into weight and bias matrices.
wolffd@0:
-
wolffd@0:
gmm -
wolffd@0: Creates a Gaussian mixture model with specified architecture.
wolffd@0:
-
wolffd@0:
gmmactiv -
wolffd@0: Computes the activations of a Gaussian mixture model.
wolffd@0:
-
wolffd@0:
gmmem -
wolffd@0: EM algorithm for Gaussian mixture model.
wolffd@0:
-
wolffd@0:
gmminit -
wolffd@0: Initialises Gaussian mixture model from data
wolffd@0:
-
wolffd@0:
gmmpak -
wolffd@0: Combines all the parameters in a Gaussian mixture model into one vector.
wolffd@0:
-
wolffd@0:
gmmpost -
wolffd@0: Computes the class posterior probabilities of a Gaussian mixture model.
wolffd@0:
-
wolffd@0:
gmmprob -
wolffd@0: Computes the data probability for a Gaussian mixture model.
wolffd@0:
-
wolffd@0:
gmmsamp -
wolffd@0: Sample from a Gaussian mixture distribution.
wolffd@0:
-
wolffd@0:
gmmunpak -
wolffd@0: Separates a vector of Gaussian mixture model parameters into its components.
wolffd@0:
-
wolffd@0:
gp -
wolffd@0: Create a Gaussian Process.
wolffd@0:
-
wolffd@0:
gpcovar -
wolffd@0: Calculate the covariance for a Gaussian Process.
wolffd@0:
-
wolffd@0:
gpcovarf -
wolffd@0: Calculate the covariance function for a Gaussian Process.
wolffd@0:
-
wolffd@0:
gpcovarp -
wolffd@0: Calculate the prior covariance for a Gaussian Process.
wolffd@0:
-
wolffd@0:
gperr -
wolffd@0: Evaluate error function for Gaussian Process.
wolffd@0:
-
wolffd@0:
gpfwd -
wolffd@0: Forward propagation through Gaussian Process.
wolffd@0:
-
wolffd@0:
gpgrad -
wolffd@0: Evaluate error gradient for Gaussian Process.
wolffd@0:
-
wolffd@0:
gpinit -
wolffd@0: Initialise Gaussian Process model.
wolffd@0:
-
wolffd@0:
gppak -
wolffd@0: Combines GP hyperparameters into one vector.
wolffd@0:
-
wolffd@0:
gpunpak -
wolffd@0: Separates hyperparameter vector into components.
wolffd@0:
-
wolffd@0:
gradchek -
wolffd@0: Checks a user-defined gradient function using finite differences.
wolffd@0:
-
wolffd@0:
graddesc -
wolffd@0: Gradient descent optimization.
wolffd@0:
-
wolffd@0:
gsamp -
wolffd@0: Sample from a Gaussian distribution.
wolffd@0:
-
wolffd@0:
gtm -
wolffd@0: Create a Generative Topographic Map.
wolffd@0:
-
wolffd@0:
gtmem -
wolffd@0: EM algorithm for Generative Topographic Mapping.
wolffd@0:
-
wolffd@0:
gtmfwd -
wolffd@0: Forward propagation through GTM.
wolffd@0:
-
wolffd@0:
gtminit -
wolffd@0: Initialise the weights and latent sample in a GTM.
wolffd@0:
-
wolffd@0:
gtmlmean -
wolffd@0: Mean responsibility for data in a GTM.
wolffd@0:
-
wolffd@0:
gtmlmode -
wolffd@0: Mode responsibility for data in a GTM.
wolffd@0:
-
wolffd@0:
gtmmag -
wolffd@0: Magnification factors for a GTM
wolffd@0:
-
wolffd@0:
gtmpost -
wolffd@0: Latent space responsibility for data in a GTM.
wolffd@0:
-
wolffd@0:
gtmprob -
wolffd@0: Probability for data under a GTM.
wolffd@0:
-
wolffd@0:
hbayes -
wolffd@0: Evaluate Hessian of Bayesian error function for network.
wolffd@0:
-
wolffd@0:
hesschek -
wolffd@0: Use central differences to confirm correct evaluation of Hessian matrix.
wolffd@0:
-
wolffd@0:
hintmat -
wolffd@0: Evaluates the coordinates of the patches for a Hinton diagram.
wolffd@0:
-
wolffd@0:
hinton -
wolffd@0: Plot Hinton diagram for a weight matrix.
wolffd@0:
-
wolffd@0:
histp -
wolffd@0: Histogram estimate of 1-dimensional probability distribution.
wolffd@0:
-
wolffd@0:
hmc -
wolffd@0: Hybrid Monte Carlo sampling.
wolffd@0:
-
wolffd@0:
kmeans -
wolffd@0: Trains a k means cluster model.
wolffd@0:
-
wolffd@0:
knn -
wolffd@0: Creates a K-nearest-neighbour classifier.
wolffd@0:
-
wolffd@0:
knnfwd -
wolffd@0: Forward propagation through a K-nearest-neighbour classifier.
wolffd@0:
-
wolffd@0:
linef -
wolffd@0: Calculate function value along a line.
wolffd@0:
-
wolffd@0:
linemin -
wolffd@0: One dimensional minimization.
wolffd@0:
-
wolffd@0:
maxitmess -
wolffd@0: Create a standard error message when training reaches max. iterations.
wolffd@0:
-
wolffd@0:
mdn -
wolffd@0: Creates a Mixture Density Network with specified architecture.
wolffd@0:
-
wolffd@0:
mdn2gmm -
wolffd@0: Converts an MDN mixture data structure to array of GMMs.
wolffd@0:
-
wolffd@0:
mdndist2 -
wolffd@0: Calculates squared distance between centres of Gaussian kernels and data
wolffd@0:
-
wolffd@0:
mdnerr -
wolffd@0: Evaluate error function for Mixture Density Network.
wolffd@0:
-
wolffd@0:
mdnfwd -
wolffd@0: Forward propagation through Mixture Density Network.
wolffd@0:
-
wolffd@0:
mdngrad -
wolffd@0: Evaluate gradient of error function for Mixture Density Network.
wolffd@0:
-
wolffd@0:
mdninit -
wolffd@0: Initialise the weights in a Mixture Density Network.
wolffd@0:
-
wolffd@0:
mdnpak -
wolffd@0: Combines weights and biases into one weights vector.
wolffd@0:
-
wolffd@0:
mdnpost -
wolffd@0: Computes the posterior probability for each MDN mixture component.
wolffd@0:
-
wolffd@0:
mdnprob -
wolffd@0: Computes the data probability likelihood for an MDN mixture structure.
wolffd@0:
-
wolffd@0:
mdnunpak -
wolffd@0: Separates weights vector into weight and bias matrices.
wolffd@0:
-
wolffd@0:
metrop -
wolffd@0: Markov Chain Monte Carlo sampling with Metropolis algorithm.
wolffd@0:
-
wolffd@0:
minbrack -
wolffd@0: Bracket a minimum of a function of one variable.
wolffd@0:
-
wolffd@0:
mlp -
wolffd@0: Create a 2-layer feedforward network.
wolffd@0:
-
wolffd@0:
mlpbkp -
wolffd@0: Backpropagate gradient of error function for 2-layer network.
wolffd@0:
-
wolffd@0:
mlpderiv -
wolffd@0: Evaluate derivatives of network outputs with respect to weights.
wolffd@0:
-
wolffd@0:
mlperr -
wolffd@0: Evaluate error function for 2-layer network.
wolffd@0:
-
wolffd@0:
mlpevfwd -
wolffd@0: Forward propagation with evidence for MLP
wolffd@0:
-
wolffd@0:
mlpfwd -
wolffd@0: Forward propagation through 2-layer network.
wolffd@0:
-
wolffd@0:
mlpgrad -
wolffd@0: Evaluate gradient of error function for 2-layer network.
wolffd@0:
-
wolffd@0:
mlphdotv -
wolffd@0: Evaluate the product of the data Hessian with a vector.
wolffd@0:
-
wolffd@0:
mlphess -
wolffd@0: Evaluate the Hessian matrix for a multi-layer perceptron network.
wolffd@0:
-
wolffd@0:
mlphint -
wolffd@0: Plot Hinton diagram for 2-layer feed-forward network.
wolffd@0:
-
wolffd@0:
mlpinit -
wolffd@0: Initialise the weights in a 2-layer feedforward network.
wolffd@0:
-
wolffd@0:
mlppak -
wolffd@0: Combines weights and biases into one weights vector.
wolffd@0:
-
wolffd@0:
mlpprior -
wolffd@0: Create Gaussian prior for mlp.
wolffd@0:
-
wolffd@0:
mlptrain -
wolffd@0: Utility to train an MLP network for demtrain
wolffd@0:
-
wolffd@0:
mlpunpak -
wolffd@0: Separates weights vector into weight and bias matrices.
wolffd@0:
-
wolffd@0:
netderiv -
wolffd@0: Evaluate derivatives of network outputs by weights generically.
wolffd@0:
-
wolffd@0:
neterr -
wolffd@0: Evaluate network error function for generic optimizers
wolffd@0:
-
wolffd@0:
netevfwd -
wolffd@0: Generic forward propagation with evidence for network
wolffd@0:
-
wolffd@0:
netgrad -
wolffd@0: Evaluate network error gradient for generic optimizers
wolffd@0:
-
wolffd@0:
nethess -
wolffd@0: Evaluate network Hessian
wolffd@0:
-
wolffd@0:
netinit -
wolffd@0: Initialise the weights in a network.
wolffd@0:
-
wolffd@0:
netopt -
wolffd@0: Optimize the weights in a network model.
wolffd@0:
-
wolffd@0:
netpak -
wolffd@0: Combines weights and biases into one weights vector.
wolffd@0:
-
wolffd@0:
netunpak -
wolffd@0: Separates weights vector into weight and bias matrices.
wolffd@0:
-
wolffd@0:
olgd -
wolffd@0: On-line gradient descent optimization.
wolffd@0:
-
wolffd@0:
pca -
wolffd@0: Principal Components Analysis
wolffd@0:
-
wolffd@0:
plotmat -
wolffd@0: Display a matrix.
wolffd@0:
-
wolffd@0:
ppca -
wolffd@0: Probabilistic Principal Components Analysis
wolffd@0:
-
wolffd@0:
quasinew -
wolffd@0: Quasi-Newton optimization.
wolffd@0:
-
wolffd@0:
rbf -
wolffd@0: Creates an RBF network with specified architecture
wolffd@0:
-
wolffd@0:
rbfbkp -
wolffd@0: Backpropagate gradient of error function for RBF network.
wolffd@0:
-
wolffd@0:
rbfderiv -
wolffd@0: Evaluate derivatives of RBF network outputs with respect to weights.
wolffd@0:
-
wolffd@0:
rbferr -
wolffd@0: Evaluate error function for RBF network.
wolffd@0:
-
wolffd@0:
rbfevfwd -
wolffd@0: Forward propagation with evidence for RBF
wolffd@0:
-
wolffd@0:
rbffwd -
wolffd@0: Forward propagation through RBF network with linear outputs.
wolffd@0:
-
wolffd@0:
rbfgrad -
wolffd@0: Evaluate gradient of error function for RBF network.
wolffd@0:
-
wolffd@0:
rbfhess -
wolffd@0: Evaluate the Hessian matrix for RBF network.
wolffd@0:
-
wolffd@0:
rbfjacob -
wolffd@0: Evaluate derivatives of RBF network outputs with respect to inputs.
wolffd@0:
-
wolffd@0:
rbfpak -
wolffd@0: Combines all the parameters in an RBF network into one weights vector.
wolffd@0:
-
wolffd@0:
rbfprior -
wolffd@0: Create Gaussian prior and output layer mask for RBF.
wolffd@0:
-
wolffd@0:
rbfsetbf -
wolffd@0: Set basis functions of RBF from data.
wolffd@0:
-
wolffd@0:
rbfsetfw -
wolffd@0: Set basis function widths of RBF.
wolffd@0:
-
wolffd@0:
rbftrain -
wolffd@0: Two stage training of RBF network.
wolffd@0:
-
wolffd@0:
rbfunpak -
wolffd@0: Separates a vector of RBF weights into its components.
wolffd@0:
-
wolffd@0:
rosegrad -
wolffd@0: Calculate gradient of Rosenbrock's function.
wolffd@0:
-
wolffd@0:
rosen -
wolffd@0: Calculate Rosenbrock's function.
wolffd@0:
-
wolffd@0:
scg -
wolffd@0: Scaled conjugate gradient optimization.
wolffd@0:
-
wolffd@0:
som -
wolffd@0: Creates a Self-Organising Map.
wolffd@0:
-
wolffd@0:
somfwd -
wolffd@0: Forward propagation through a Self-Organising Map.
wolffd@0:
-
wolffd@0:
sompak -
wolffd@0: Combines node weights into one weights matrix.
wolffd@0:
-
wolffd@0:
somtrain -
wolffd@0: Kohonen training algorithm for SOM.
wolffd@0:
-
wolffd@0:
somunpak -
wolffd@0: Replaces node weights in SOM.
wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
wolffd@0:
wolffd@0: