wolffd@0: wolffd@0:
wolffd@0:wolffd@0: demgpwolffd@0: wolffd@0: wolffd@0:
x
and one target variable
wolffd@0: t
. The values in x
are chosen in two separated clusters and the
wolffd@0: target data is generated by computing sin(2*pi*x)
and adding Gaussian
wolffd@0: noise. Two Gaussian Processes, each with different covariance functions
wolffd@0: are trained by optimising the hyperparameters
wolffd@0: using the scaled conjugate gradient algorithm. The final predictions are
wolffd@0: plotted together with 2 standard deviation error bars.
wolffd@0:
wolffd@0: gp
, gperr
, gpfwd
, gpgrad
, gpinit
, scg
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: