wolffd@0: wolffd@0:
wolffd@0:wolffd@0: wolffd@0: net = knn(nin, nout, k, tr_in, tr_targets) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
net = knn(nin, nout, k, tr_in, tr_targets)
creates a KNN model net
wolffd@0: with input dimension nin
, output dimension nout
and k
wolffd@0: neighbours. The training data is also stored in the data structure and the
wolffd@0: targets are assumed to be using a 1-of-N coding.
wolffd@0:
wolffd@0: The fields in net
are
wolffd@0:
wolffd@0: wolffd@0: type = 'knn' wolffd@0: nin = number of inputs wolffd@0: nout = number of outputs wolffd@0: tr_in = training input data wolffd@0: tr_targets = training target data wolffd@0:wolffd@0: wolffd@0: wolffd@0:
kmeans
, knnfwd
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: