wolffd@0: wolffd@0: wolffd@0: wolffd@0: Netlab Reference Manual mdn2gmm wolffd@0: wolffd@0: wolffd@0: wolffd@0:

mdn2gmm wolffd@0:

wolffd@0:

wolffd@0: Purpose wolffd@0:

wolffd@0: Converts an MDN mixture data structure to array of GMMs. wolffd@0: wolffd@0:

wolffd@0: Synopsis wolffd@0:

wolffd@0:
wolffd@0: gmmmixes = mdn2gmm(mdnmixes)
wolffd@0: 
wolffd@0: wolffd@0: wolffd@0:

wolffd@0: Description wolffd@0:

wolffd@0: gmmmixes = mdn2gmm(mdnmixes) takes an MDN mixture data structure wolffd@0: mdnmixes wolffd@0: containing three matrices (for priors, centres and variances) where each wolffd@0: row represents the corresponding parameter values for a different mixture model wolffd@0: and creates an array of GMMs. These can then be used with the standard wolffd@0: Netlab Gaussian mixture model functions. wolffd@0: wolffd@0:

wolffd@0: Example wolffd@0:

wolffd@0:
wolffd@0: 
wolffd@0: mdnmixes = mdnfwd(net, x);
wolffd@0: mixes = mdn2gmm(mdnmixes);
wolffd@0: p = gmmprob(mixes(1), y);
wolffd@0: 
wolffd@0: wolffd@0: This creates an array GMM mixture models (one for each data point in wolffd@0: x). The vector p is then filled with the conditional wolffd@0: probabilities of the values y given x(1,:). wolffd@0: wolffd@0:

wolffd@0: See Also wolffd@0:

wolffd@0: gmm, mdn, mdnfwd
wolffd@0: Pages: wolffd@0: Index wolffd@0:
wolffd@0:

Copyright (c) Ian T Nabney (1996-9) wolffd@0:

David J Evans (1998) wolffd@0: wolffd@0: wolffd@0: