wolffd@0: wolffd@0:
wolffd@0:wolffd@0: e = glmerr(net, x, t) wolffd@0: [e, edata, eprior] = glmerr(net, x, t) wolffd@0: [e, edata, eprior, y, a] = glmerr(net, x, t) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
e = glmerr(net, x, t)
takes a generalized
wolffd@0: linear model data structure net
together with a matrix x
wolffd@0: of input vectors and a matrix t
of target vectors, and evaluates
wolffd@0: the error function e
. The choice of error function corresponds
wolffd@0: to the output unit activation function. Each row of x
wolffd@0: corresponds to one input vector and each row of t
corresponds to
wolffd@0: one target vector.
wolffd@0:
wolffd@0: [e, edata, eprior, y, a] = glmerr(net, x, t)
also returns
wolffd@0: the data and prior components of the total error.
wolffd@0:
wolffd@0:
[e, edata, eprior, y, a] = glmerr(net, x)
also returns a matrix y
wolffd@0: giving the outputs of the models and a matrix a
wolffd@0: giving the summed inputs to each output unit, where each row
wolffd@0: corresponds to one pattern.
wolffd@0:
wolffd@0:
glm
, glmpak
, glmunpak
, glmfwd
, glmgrad
, glmtrain
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: