wolffd@0: <html>
wolffd@0: <head>
wolffd@0: <title>
wolffd@0: Netlab Reference Manual demtrain
wolffd@0: </title>
wolffd@0: </head>
wolffd@0: <body>
wolffd@0: <H1> demtrain
wolffd@0: </H1>
wolffd@0: <h2>
wolffd@0: Purpose
wolffd@0: </h2>
wolffd@0: Demonstrate training of MLP network.
wolffd@0: 
wolffd@0: <p><h2>
wolffd@0: Synopsis
wolffd@0: </h2>
wolffd@0: <PRE>
wolffd@0: demtrain</PRE>
wolffd@0: 
wolffd@0: 
wolffd@0: <p><h2>
wolffd@0: Description
wolffd@0: </h2>
wolffd@0: <CODE>demtrain</CODE> brings up a simple GUI to show the training of
wolffd@0: an MLP network on classification and regression problems.  The user
wolffd@0: should load in a dataset (which should be in Netlab format: see 
wolffd@0: <CODE>datread</CODE>), select the output activation function, the
wolffd@0:  number of cycles and hidden units and then
wolffd@0: train the network. The scaled conjugate gradient algorithm is used.
wolffd@0: A graph shows the evolution of the error: the value is shown 
wolffd@0: <CODE>max(ceil(iterations / 50), 5)</CODE> cycles.
wolffd@0: 
wolffd@0: <p>Once the network is trained, it is saved to the file <CODE>mlptrain.net</CODE>.
wolffd@0: The results can then be viewed as a confusion matrix (for classification
wolffd@0: problems) or a plot of output versus target (for regression problems).
wolffd@0: 
wolffd@0: <p><h2>
wolffd@0: See Also
wolffd@0: </h2>
wolffd@0: <CODE><a href="confmat.htm">confmat</a></CODE>, <CODE><a href="datread.htm">datread</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="netopt.htm">netopt</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE><hr>
wolffd@0: <b>Pages:</b>
wolffd@0: <a href="index.htm">Index</a>
wolffd@0: <hr>
wolffd@0: <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0: 
wolffd@0: 
wolffd@0: </body>
wolffd@0: </html>