wolffd@0: wolffd@0: wolffd@0: wolffd@0: Netlab Reference Manual rbfbkp wolffd@0: wolffd@0: wolffd@0: wolffd@0:

rbfbkp wolffd@0:

wolffd@0:

wolffd@0: Purpose wolffd@0:

wolffd@0: Backpropagate gradient of error function for RBF network. wolffd@0: wolffd@0:

wolffd@0: Synopsis wolffd@0:

wolffd@0:
wolffd@0: g = rbfbkp(net, x, z, n2, deltas)
wolffd@0: wolffd@0: wolffd@0:

wolffd@0: Description wolffd@0:

wolffd@0: g = rbfbkp(net, x, z, n2, deltas) takes a network data structure wolffd@0: net together with a matrix x of input vectors, a matrix wolffd@0: z of hidden unit activations, a matrix n2 of the squared wolffd@0: distances between centres and inputs, and a matrix deltas of the wolffd@0: gradient of the error function with respect to the values of the wolffd@0: output units (i.e. the summed inputs to the output units, before the wolffd@0: activation function is applied). The return value is the gradient wolffd@0: g of the error function with respect to the network wolffd@0: weights. Each row of x corresponds to one input vector. wolffd@0: wolffd@0:

This function is provided so that the common backpropagation algorithm wolffd@0: can be used by RBF network models to compute wolffd@0: gradients for the output values (in rbfderiv) as well as standard error wolffd@0: functions. wolffd@0: wolffd@0:

wolffd@0: See Also wolffd@0:

wolffd@0: rbf, rbfgrad, rbfderiv
wolffd@0: Pages: wolffd@0: Index wolffd@0:
wolffd@0:

Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: