wolffd@0: wolffd@0:
wolffd@0:wolffd@0: wolffd@0: g = mdngrad(net, x, t) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
g = mdngrad(net, x, t) takes a mixture density network data
wolffd@0: structure net, a matrix x of input vectors and a matrix
wolffd@0: t of target vectors, and evaluates the gradient g of the
wolffd@0: error function with respect to the network weights. The error function
wolffd@0: is negative log likelihood of the target data. Each row of x
wolffd@0: corresponds to one input vector and each row of t corresponds to
wolffd@0: one target vector.
wolffd@0:
wolffd@0: mdn, mdnfwd, mdnerr, mdnprob, mlpbkpCopyright (c) Ian T Nabney (1996-9) wolffd@0:
David J Evans (1998) wolffd@0: wolffd@0: wolffd@0: