wolffd@0: wolffd@0: wolffd@0: wolffd@0: Netlab Reference Manual glmderiv wolffd@0: wolffd@0: wolffd@0: wolffd@0:

glmderiv wolffd@0:

wolffd@0:

wolffd@0: Purpose wolffd@0:

wolffd@0: Evaluate derivatives of GLM outputs with respect to weights. wolffd@0: wolffd@0:

wolffd@0: Synopsis wolffd@0:

wolffd@0:
wolffd@0: 
wolffd@0: g = glmderiv(net, x)
wolffd@0: 
wolffd@0: wolffd@0: wolffd@0:

wolffd@0: Description wolffd@0:

wolffd@0: g = glmderiv(net, x) takes a network data structure net and a matrix wolffd@0: of input vectors x and returns a three-index matrix mat{g} whose wolffd@0: i, j, k wolffd@0: element contains the derivative of network output k with respect to wolffd@0: weight or bias parameter j for input pattern i. The ordering of the wolffd@0: weight and bias parameters is defined by glmunpak. wolffd@0: wolffd@0:

wolffd@0: See also wolffd@0:

wolffd@0:
wolffd@0: glm, glmunpak, glmgrad
wolffd@0: wolffd@0: wolffd@0:


wolffd@0: Pages: wolffd@0: Index wolffd@0:
wolffd@0:

Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: