wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: Netlab Reference Manual demmlp2
wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: demmlp2
wolffd@0:
wolffd@0:
wolffd@0: Purpose
wolffd@0:
wolffd@0: Demonstrate simple classification using a multi-layer perceptron
wolffd@0:
wolffd@0:
wolffd@0: Synopsis
wolffd@0:
wolffd@0:
wolffd@0: demmlp2
wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: Description
wolffd@0:
wolffd@0: The problem consists of input data in two dimensions drawn from a mixture
wolffd@0: of three Gaussians: two of which are assigned to a single class. An MLP
wolffd@0: with logistic outputs trained with a quasi-Newton optimisation algorithm is
wolffd@0: compared with the optimal Bayesian decision rule.
wolffd@0:
wolffd@0:
wolffd@0: See Also
wolffd@0:
wolffd@0: mlp
, mlpfwd
, neterr
, quasinew
wolffd@0: Pages:
wolffd@0: Index
wolffd@0:
wolffd@0: Copyright (c) Ian T Nabney (1996-9)
wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: