wolffd@0: wolffd@0:
wolffd@0:wolffd@0: demmlp1wolffd@0: wolffd@0: wolffd@0:
x
and one target variable
wolffd@0: t
with data generated by sampling x
at equal intervals and then
wolffd@0: generating target data by computing sin(2*pi*x)
and adding Gaussian
wolffd@0: noise. A 2-layer network with linear outputs is trained by minimizing a
wolffd@0: sum-of-squares error function using the scaled conjugate gradient optimizer.
wolffd@0:
wolffd@0: mlp
, mlperr
, mlpgrad
, scg
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: