wolffd@0: wolffd@0:
wolffd@0:wolffd@0: demgparewolffd@0: wolffd@0: wolffd@0:
x1, x2 and
wolffd@0: x3, and one target variable 
wolffd@0: t. The 
wolffd@0: target data is generated by computing sin(2*pi*x1) and adding Gaussian 
wolffd@0: noise, x2 is a copy of x1 with a higher level of added
wolffd@0: noise, and x3 is sampled randomly from a Gaussian distribution.
wolffd@0: A Gaussian Process, is
wolffd@0: trained by optimising the hyperparameters 
wolffd@0: using the scaled conjugate gradient algorithm. The final values of the
wolffd@0: hyperparameters show that the model successfully identifies the importance
wolffd@0: of each input. 
wolffd@0: 
wolffd@0: demgp, gp, gperr, gpfwd, gpgrad, gpinit, scgCopyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: