adamstark@46
|
1 //=======================================================================
|
adamstark@46
|
2 /** @file BTrack.cpp
|
adamstark@47
|
3 * @brief BTrack - a real-time beat tracker
|
adamstark@46
|
4 * @author Adam Stark
|
adamstark@46
|
5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
|
adamstark@46
|
6 *
|
adamstark@46
|
7 * This program is free software: you can redistribute it and/or modify
|
adamstark@46
|
8 * it under the terms of the GNU General Public License as published by
|
adamstark@46
|
9 * the Free Software Foundation, either version 3 of the License, or
|
adamstark@46
|
10 * (at your option) any later version.
|
adamstark@46
|
11 *
|
adamstark@46
|
12 * This program is distributed in the hope that it will be useful,
|
adamstark@46
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
adamstark@46
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
adamstark@46
|
15 * GNU General Public License for more details.
|
adamstark@46
|
16 *
|
adamstark@46
|
17 * You should have received a copy of the GNU General Public License
|
adamstark@46
|
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
adamstark@46
|
19 */
|
adamstark@46
|
20 //=======================================================================
|
adamstark@46
|
21
|
adamstark@46
|
22 #include <cmath>
|
adamstark@52
|
23 #include <algorithm>
|
adamstark@97
|
24 #include <numeric>
|
adamstark@46
|
25 #include "BTrack.h"
|
adamstark@46
|
26 #include "samplerate.h"
|
adamstark@89
|
27 #include <iostream>
|
adamstark@46
|
28
|
adamstark@55
|
29 //=======================================================================
|
adamstark@91
|
30 BTrack::BTrack()
|
adamstark@91
|
31 : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@55
|
32 {
|
adamstark@93
|
33 initialise (512, 1024);
|
adamstark@55
|
34 }
|
adamstark@46
|
35
|
adamstark@51
|
36 //=======================================================================
|
adamstark@91
|
37 BTrack::BTrack (int hopSize_)
|
adamstark@97
|
38 : odf (hopSize_, 2 * hopSize_, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@46
|
39 {
|
adamstark@97
|
40 initialise (hopSize_, 2 * hopSize_);
|
adamstark@55
|
41 }
|
adamstark@55
|
42
|
adamstark@55
|
43 //=======================================================================
|
adamstark@91
|
44 BTrack::BTrack (int hopSize_, int frameSize_)
|
adamstark@91
|
45 : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@55
|
46 {
|
adamstark@91
|
47 initialise (hopSize_, frameSize_);
|
adamstark@55
|
48 }
|
adamstark@55
|
49
|
adamstark@55
|
50 //=======================================================================
|
adamstark@88
|
51 BTrack::~BTrack()
|
adamstark@88
|
52 {
|
adamstark@93
|
53 #ifdef USE_FFTW
|
adamstark@88
|
54 // destroy fft plan
|
adamstark@91
|
55 fftw_destroy_plan (acfForwardFFT);
|
adamstark@91
|
56 fftw_destroy_plan (acfBackwardFFT);
|
adamstark@91
|
57 fftw_free (complexIn);
|
adamstark@91
|
58 fftw_free (complexOut);
|
adamstark@93
|
59 #endif
|
adamstark@93
|
60
|
adamstark@93
|
61 #ifdef USE_KISS_FFT
|
adamstark@93
|
62 free (cfgForwards);
|
adamstark@93
|
63 free (cfgBackwards);
|
adamstark@93
|
64 delete [] fftIn;
|
adamstark@93
|
65 delete [] fftOut;
|
adamstark@93
|
66 #endif
|
adamstark@88
|
67 }
|
adamstark@88
|
68
|
adamstark@88
|
69 //=======================================================================
|
adamstark@91
|
70 double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs)
|
adamstark@55
|
71 {
|
adamstark@55
|
72 double hop = (double) hopSize;
|
adamstark@55
|
73 double samplingFrequency = (double) fs;
|
adamstark@55
|
74 double frameNum = (double) frameNumber;
|
adamstark@55
|
75
|
adamstark@55
|
76 return ((hop / samplingFrequency) * frameNum);
|
adamstark@55
|
77 }
|
adamstark@55
|
78
|
adamstark@55
|
79 //=======================================================================
|
adamstark@91
|
80 void BTrack::initialise (int hopSize_, int frameSize_)
|
adamstark@55
|
81 {
|
adamstark@97
|
82 // set vector sizes
|
adamstark@97
|
83 resampledOnsetDF.resize (512);
|
adamstark@97
|
84 acf.resize (512);
|
adamstark@97
|
85 weightingVector.resize (128);
|
adamstark@97
|
86 combFilterBankOutput.resize (128);
|
adamstark@97
|
87 tempoObservationVector.resize (41);
|
adamstark@97
|
88 delta.resize (41);
|
adamstark@97
|
89 prevDelta.resize (41);
|
adamstark@97
|
90 prevDeltaFixed.resize (41);
|
adamstark@97
|
91
|
adamstark@98
|
92 double rayleighParameter = 43;
|
adamstark@54
|
93 double pi = 3.14159265;
|
adamstark@46
|
94
|
adamstark@46
|
95
|
adamstark@46
|
96 // initialise parameters
|
adamstark@46
|
97 tightness = 5;
|
adamstark@46
|
98 alpha = 0.9;
|
adamstark@58
|
99 estimatedTempo = 120.0;
|
adamstark@100
|
100 tempoToLagFactor = 60. * 44100. / 512.;
|
adamstark@46
|
101
|
adamstark@46
|
102 m0 = 10;
|
adamstark@58
|
103 beatCounter = -1;
|
adamstark@46
|
104
|
adamstark@57
|
105 beatDueInFrame = false;
|
adamstark@46
|
106
|
adamstark@58
|
107
|
adamstark@46
|
108 // create rayleigh weighting vector
|
adamstark@91
|
109 for (int n = 0; n < 128; n++)
|
adamstark@98
|
110 weightingVector[n] = ((double) n / pow (rayleighParameter, 2)) * exp((-1 * pow((double) - n, 2)) / (2 * pow (rayleighParameter, 2)));
|
adamstark@46
|
111
|
adamstark@100
|
112 // initialise prevDelta
|
adamstark@97
|
113 std::fill (prevDelta.begin(), prevDelta.end(), 1);
|
adamstark@97
|
114
|
adamstark@54
|
115 double t_mu = 41/2;
|
adamstark@54
|
116 double m_sig;
|
adamstark@54
|
117 double x;
|
adamstark@46
|
118 // create tempo transition matrix
|
adamstark@46
|
119 m_sig = 41/8;
|
adamstark@46
|
120 for (int i = 0;i < 41;i++)
|
adamstark@46
|
121 {
|
adamstark@46
|
122 for (int j = 0;j < 41;j++)
|
adamstark@46
|
123 {
|
adamstark@46
|
124 x = j+1;
|
adamstark@46
|
125 t_mu = i+1;
|
adamstark@58
|
126 tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
|
adamstark@46
|
127 }
|
adamstark@55
|
128 }
|
adamstark@46
|
129
|
adamstark@46
|
130 // tempo is not fixed
|
adamstark@58
|
131 tempoFixed = false;
|
adamstark@58
|
132
|
adamstark@58
|
133 // initialise latest cumulative score value
|
adamstark@58
|
134 // in case it is requested before any processing takes place
|
adamstark@58
|
135 latestCumulativeScoreValue = 0;
|
adamstark@55
|
136
|
adamstark@55
|
137 // initialise algorithm given the hopsize
|
adamstark@100
|
138 setHopSize (hopSize_);
|
adamstark@88
|
139
|
adamstark@88
|
140 // Set up FFT for calculating the auto-correlation function
|
adamstark@88
|
141 FFTLengthForACFCalculation = 1024;
|
adamstark@88
|
142
|
adamstark@93
|
143 #ifdef USE_FFTW
|
adamstark@91
|
144 complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
|
adamstark@91
|
145 complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
|
adamstark@88
|
146
|
adamstark@91
|
147 acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
|
adamstark@91
|
148 acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
|
adamstark@93
|
149 #endif
|
adamstark@93
|
150
|
adamstark@93
|
151 #ifdef USE_KISS_FFT
|
adamstark@93
|
152 fftIn = new kiss_fft_cpx[FFTLengthForACFCalculation];
|
adamstark@93
|
153 fftOut = new kiss_fft_cpx[FFTLengthForACFCalculation];
|
adamstark@93
|
154 cfgForwards = kiss_fft_alloc (FFTLengthForACFCalculation, 0, 0, 0);
|
adamstark@93
|
155 cfgBackwards = kiss_fft_alloc (FFTLengthForACFCalculation, 1, 0, 0);
|
adamstark@93
|
156 #endif
|
adamstark@46
|
157 }
|
adamstark@46
|
158
|
adamstark@51
|
159 //=======================================================================
|
adamstark@91
|
160 void BTrack::setHopSize (int hopSize_)
|
adamstark@46
|
161 {
|
adamstark@57
|
162 hopSize = hopSize_;
|
adamstark@97
|
163 onsetDFBufferSize = (512 * 512) / hopSize; // calculate df buffer size
|
adamstark@101
|
164 beatPeriod = round(60/((((double) hopSize)/44100) * 120.));
|
adamstark@63
|
165
|
adamstark@63
|
166 // set size of onset detection function buffer
|
adamstark@91
|
167 onsetDF.resize (onsetDFBufferSize);
|
adamstark@63
|
168
|
adamstark@63
|
169 // set size of cumulative score buffer
|
adamstark@91
|
170 cumulativeScore.resize (onsetDFBufferSize);
|
adamstark@46
|
171
|
adamstark@46
|
172 // initialise df_buffer to zeros
|
adamstark@91
|
173 for (int i = 0; i < onsetDFBufferSize; i++)
|
adamstark@46
|
174 {
|
adamstark@58
|
175 onsetDF[i] = 0;
|
adamstark@58
|
176 cumulativeScore[i] = 0;
|
adamstark@46
|
177
|
adamstark@57
|
178 if ((i % ((int) round(beatPeriod))) == 0)
|
adamstark@46
|
179 {
|
adamstark@58
|
180 onsetDF[i] = 1;
|
adamstark@46
|
181 }
|
adamstark@46
|
182 }
|
adamstark@46
|
183 }
|
adamstark@46
|
184
|
adamstark@51
|
185 //=======================================================================
|
adamstark@91
|
186 void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_)
|
adamstark@65
|
187 {
|
adamstark@65
|
188 // update the onset detection function object
|
adamstark@91
|
189 odf.initialise (hopSize_, frameSize_);
|
adamstark@65
|
190
|
adamstark@65
|
191 // update the hop size being used by the beat tracker
|
adamstark@91
|
192 setHopSize (hopSize_);
|
adamstark@65
|
193 }
|
adamstark@65
|
194
|
adamstark@65
|
195 //=======================================================================
|
adamstark@57
|
196 bool BTrack::beatDueInCurrentFrame()
|
adamstark@57
|
197 {
|
adamstark@57
|
198 return beatDueInFrame;
|
adamstark@57
|
199 }
|
adamstark@57
|
200
|
adamstark@57
|
201 //=======================================================================
|
adamstark@78
|
202 double BTrack::getCurrentTempoEstimate()
|
adamstark@78
|
203 {
|
adamstark@78
|
204 return estimatedTempo;
|
adamstark@78
|
205 }
|
adamstark@78
|
206
|
adamstark@78
|
207 //=======================================================================
|
adamstark@57
|
208 int BTrack::getHopSize()
|
adamstark@57
|
209 {
|
adamstark@57
|
210 return hopSize;
|
adamstark@57
|
211 }
|
adamstark@57
|
212
|
adamstark@57
|
213 //=======================================================================
|
adamstark@58
|
214 double BTrack::getLatestCumulativeScoreValue()
|
adamstark@58
|
215 {
|
adamstark@58
|
216 return latestCumulativeScoreValue;
|
adamstark@58
|
217 }
|
adamstark@58
|
218
|
adamstark@58
|
219 //=======================================================================
|
adamstark@91
|
220 void BTrack::processAudioFrame (double* frame)
|
adamstark@55
|
221 {
|
adamstark@55
|
222 // calculate the onset detection function sample for the frame
|
adamstark@91
|
223 double sample = odf.calculateOnsetDetectionFunctionSample (frame);
|
adamstark@55
|
224
|
adamstark@55
|
225 // process the new onset detection function sample in the beat tracking algorithm
|
adamstark@91
|
226 processOnsetDetectionFunctionSample (sample);
|
adamstark@55
|
227 }
|
adamstark@55
|
228
|
adamstark@55
|
229 //=======================================================================
|
adamstark@91
|
230 void BTrack::processOnsetDetectionFunctionSample (double newSample)
|
adamstark@56
|
231 {
|
adamstark@56
|
232 // we need to ensure that the onset
|
adamstark@56
|
233 // detection function sample is positive
|
adamstark@91
|
234 newSample = fabs (newSample);
|
adamstark@56
|
235
|
adamstark@56
|
236 // add a tiny constant to the sample to stop it from ever going
|
adamstark@56
|
237 // to zero. this is to avoid problems further down the line
|
adamstark@56
|
238 newSample = newSample + 0.0001;
|
adamstark@56
|
239
|
adamstark@46
|
240 m0--;
|
adamstark@58
|
241 beatCounter--;
|
adamstark@57
|
242 beatDueInFrame = false;
|
adamstark@90
|
243
|
adamstark@46
|
244 // add new sample at the end
|
adamstark@91
|
245 onsetDF.addSampleToEnd (newSample);
|
adamstark@46
|
246
|
adamstark@46
|
247 // update cumulative score
|
adamstark@91
|
248 updateCumulativeScore (newSample);
|
adamstark@46
|
249
|
adamstark@97
|
250 // if we are halfway between beats, predict a beat
|
adamstark@46
|
251 if (m0 == 0)
|
adamstark@97
|
252 predictBeat();
|
adamstark@46
|
253
|
adamstark@46
|
254 // if we are at a beat
|
adamstark@58
|
255 if (beatCounter == 0)
|
adamstark@46
|
256 {
|
adamstark@57
|
257 beatDueInFrame = true; // indicate a beat should be output
|
adamstark@46
|
258
|
adamstark@46
|
259 // recalculate the tempo
|
adamstark@57
|
260 resampleOnsetDetectionFunction();
|
adamstark@57
|
261 calculateTempo();
|
adamstark@46
|
262 }
|
adamstark@46
|
263 }
|
adamstark@46
|
264
|
adamstark@51
|
265 //=======================================================================
|
adamstark@91
|
266 void BTrack::setTempo (double tempo)
|
adamstark@97
|
267 {
|
adamstark@46
|
268 /////////// TEMPO INDICATION RESET //////////////////
|
adamstark@46
|
269
|
adamstark@46
|
270 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
271 while (tempo > 160)
|
adamstark@97
|
272 tempo = tempo / 2;
|
adamstark@46
|
273
|
adamstark@46
|
274 while (tempo < 80)
|
adamstark@97
|
275 tempo = tempo * 2;
|
adamstark@46
|
276
|
adamstark@46
|
277 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@46
|
278 int tempo_index = (int) round((tempo - 80)/2);
|
adamstark@46
|
279
|
adamstark@97
|
280 // now set previous tempo observations to zero and set desired tempo index to 1
|
adamstark@97
|
281 std::fill (prevDelta.begin(), prevDelta.end(), 0);
|
adamstark@58
|
282 prevDelta[tempo_index] = 1;
|
adamstark@46
|
283
|
adamstark@46
|
284 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
|
adamstark@46
|
285
|
adamstark@46
|
286 // calculate new beat period
|
adamstark@97
|
287 int newBeatPeriod = (int) round (60 / ((((double) hopSize) / 44100) * tempo));
|
adamstark@46
|
288
|
adamstark@97
|
289 int k = 1;
|
adamstark@97
|
290
|
adamstark@97
|
291 // initialise onset detection function with delta functions spaced
|
adamstark@97
|
292 // at the new beat period
|
adamstark@97
|
293 for (int i = onsetDFBufferSize - 1; i >= 0; i--)
|
adamstark@46
|
294 {
|
adamstark@97
|
295 if (k == 1)
|
adamstark@46
|
296 {
|
adamstark@58
|
297 cumulativeScore[i] = 150;
|
adamstark@58
|
298 onsetDF[i] = 150;
|
adamstark@46
|
299 }
|
adamstark@46
|
300 else
|
adamstark@46
|
301 {
|
adamstark@58
|
302 cumulativeScore[i] = 10;
|
adamstark@58
|
303 onsetDF[i] = 10;
|
adamstark@46
|
304 }
|
adamstark@46
|
305
|
adamstark@97
|
306 k++;
|
adamstark@46
|
307
|
adamstark@97
|
308 if (k > newBeatPeriod)
|
adamstark@46
|
309 {
|
adamstark@97
|
310 k = 1;
|
adamstark@46
|
311 }
|
adamstark@46
|
312 }
|
adamstark@46
|
313
|
adamstark@46
|
314 /////////// INDICATE THAT THIS IS A BEAT //////////////////
|
adamstark@46
|
315
|
adamstark@46
|
316 // beat is now
|
adamstark@58
|
317 beatCounter = 0;
|
adamstark@46
|
318
|
adamstark@46
|
319 // offbeat is half of new beat period away
|
adamstark@97
|
320 m0 = (int) round (((double) newBeatPeriod) / 2);
|
adamstark@46
|
321 }
|
adamstark@46
|
322
|
adamstark@51
|
323 //=======================================================================
|
adamstark@91
|
324 void BTrack::fixTempo (double tempo)
|
adamstark@46
|
325 {
|
adamstark@46
|
326 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
327 while (tempo > 160)
|
adamstark@100
|
328 tempo = tempo / 2;
|
adamstark@46
|
329
|
adamstark@46
|
330 while (tempo < 80)
|
adamstark@100
|
331 tempo = tempo * 2;
|
adamstark@46
|
332
|
adamstark@46
|
333 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@100
|
334 int tempoIndex = (int) round((tempo - 80) / 2);
|
adamstark@46
|
335
|
adamstark@46
|
336 // now set previous fixed previous tempo observation values to zero
|
adamstark@46
|
337 for (int i=0;i < 41;i++)
|
adamstark@46
|
338 {
|
adamstark@58
|
339 prevDeltaFixed[i] = 0;
|
adamstark@46
|
340 }
|
adamstark@46
|
341
|
adamstark@46
|
342 // set desired tempo index to 1
|
adamstark@100
|
343 prevDeltaFixed[tempoIndex] = 1;
|
adamstark@46
|
344
|
adamstark@46
|
345 // set the tempo fix flag
|
adamstark@58
|
346 tempoFixed = true;
|
adamstark@46
|
347 }
|
adamstark@46
|
348
|
adamstark@51
|
349 //=======================================================================
|
adamstark@57
|
350 void BTrack::doNotFixTempo()
|
adamstark@46
|
351 {
|
adamstark@46
|
352 // set the tempo fix flag
|
adamstark@58
|
353 tempoFixed = false;
|
adamstark@46
|
354 }
|
adamstark@46
|
355
|
adamstark@51
|
356 //=======================================================================
|
adamstark@57
|
357 void BTrack::resampleOnsetDetectionFunction()
|
adamstark@46
|
358 {
|
adamstark@46
|
359 float output[512];
|
adamstark@58
|
360 float input[onsetDFBufferSize];
|
adamstark@54
|
361
|
adamstark@58
|
362 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@58
|
363 input[i] = (float) onsetDF[i];
|
adamstark@89
|
364
|
adamstark@97
|
365 double ratio = 512.0 / ((double) onsetDFBufferSize);
|
adamstark@97
|
366 int bufferLength = onsetDFBufferSize;
|
adamstark@97
|
367 int outputLength = 512;
|
adamstark@89
|
368
|
adamstark@97
|
369 SRC_DATA src_data;
|
adamstark@89
|
370 src_data.data_in = input;
|
adamstark@97
|
371 src_data.input_frames = bufferLength;
|
adamstark@97
|
372 src_data.src_ratio = ratio;
|
adamstark@89
|
373 src_data.data_out = output;
|
adamstark@97
|
374 src_data.output_frames = outputLength;
|
adamstark@89
|
375
|
adamstark@89
|
376 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
|
adamstark@89
|
377
|
adamstark@97
|
378 for (int i = 0; i < outputLength; i++)
|
adamstark@89
|
379 resampledOnsetDF[i] = (double) src_data.data_out[i];
|
adamstark@46
|
380 }
|
adamstark@46
|
381
|
adamstark@51
|
382 //=======================================================================
|
adamstark@57
|
383 void BTrack::calculateTempo()
|
adamstark@46
|
384 {
|
adamstark@46
|
385 // adaptive threshold on input
|
adamstark@100
|
386 adaptiveThreshold (resampledOnsetDF);
|
adamstark@46
|
387
|
adamstark@46
|
388 // calculate auto-correlation function of detection function
|
adamstark@100
|
389 calculateBalancedACF (resampledOnsetDF);
|
adamstark@46
|
390
|
adamstark@46
|
391 // calculate output of comb filterbank
|
adamstark@57
|
392 calculateOutputOfCombFilterBank();
|
adamstark@46
|
393
|
adamstark@46
|
394 // adaptive threshold on rcf
|
adamstark@100
|
395 adaptiveThreshold (combFilterBankOutput);
|
adamstark@46
|
396
|
adamstark@59
|
397 // calculate tempo observation vector from beat period observation vector
|
adamstark@100
|
398 for (int i = 0; i < 41; i++)
|
adamstark@46
|
399 {
|
adamstark@100
|
400 int tempoIndex1 = (int) round (tempoToLagFactor / ((double) ((2*i)+80)));
|
adamstark@100
|
401 int tempoIndex2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160)));
|
adamstark@100
|
402 tempoObservationVector[i] = combFilterBankOutput[tempoIndex1 - 1] + combFilterBankOutput[tempoIndex2 - 1];
|
adamstark@46
|
403 }
|
adamstark@46
|
404
|
adamstark@46
|
405 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
|
adamstark@58
|
406 if (tempoFixed)
|
adamstark@46
|
407 {
|
adamstark@100
|
408 for (int k = 0; k < 41; k++)
|
adamstark@100
|
409 prevDelta[k] = prevDeltaFixed[k];
|
adamstark@46
|
410 }
|
adamstark@46
|
411
|
adamstark@100
|
412 for (int j = 0; j < 41; j++)
|
adamstark@46
|
413 {
|
adamstark@100
|
414 double maxValue = -1;
|
adamstark@100
|
415
|
adamstark@100
|
416 for (int i = 0; i < 41; i++)
|
adamstark@46
|
417 {
|
adamstark@100
|
418 double currentValue = prevDelta[i] * tempoTransitionMatrix[i][j];
|
adamstark@46
|
419
|
adamstark@100
|
420 if (currentValue > maxValue)
|
adamstark@100
|
421 maxValue = currentValue;
|
adamstark@46
|
422 }
|
adamstark@46
|
423
|
adamstark@100
|
424 delta[j] = maxValue * tempoObservationVector[j];
|
adamstark@46
|
425 }
|
adamstark@46
|
426
|
adamstark@100
|
427 normaliseVector (delta);
|
adamstark@46
|
428
|
adamstark@100
|
429 double maxIndex = -1;
|
adamstark@100
|
430 double maxValue = -1;
|
adamstark@46
|
431
|
adamstark@100
|
432 for (int j = 0; j < 41; j++)
|
adamstark@46
|
433 {
|
adamstark@100
|
434 if (delta[j] > maxValue)
|
adamstark@46
|
435 {
|
adamstark@100
|
436 maxValue = delta[j];
|
adamstark@100
|
437 maxIndex = j;
|
adamstark@46
|
438 }
|
adamstark@46
|
439
|
adamstark@58
|
440 prevDelta[j] = delta[j];
|
adamstark@46
|
441 }
|
adamstark@46
|
442
|
adamstark@100
|
443 beatPeriod = round ((60.0 * 44100.0) / (((2 * maxIndex) + 80) * ((double) hopSize)));
|
adamstark@46
|
444
|
adamstark@57
|
445 if (beatPeriod > 0)
|
adamstark@100
|
446 estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod);
|
adamstark@46
|
447 }
|
adamstark@46
|
448
|
adamstark@51
|
449 //=======================================================================
|
adamstark@100
|
450 void BTrack::adaptiveThreshold (std::vector<double>& x)
|
adamstark@46
|
451 {
|
adamstark@100
|
452 int N = static_cast<int> (x.size());
|
adamstark@100
|
453 double threshold[N];
|
adamstark@46
|
454
|
adamstark@46
|
455 int p_post = 7;
|
adamstark@46
|
456 int p_pre = 8;
|
adamstark@46
|
457
|
adamstark@100
|
458 int t = std::min (N, p_post); // what is smaller, p_post or df size. This is to avoid accessing outside of arrays
|
adamstark@46
|
459
|
adamstark@46
|
460 // find threshold for first 't' samples, where a full average cannot be computed yet
|
adamstark@100
|
461 for (int i = 0; i <= t; i++)
|
adamstark@46
|
462 {
|
adamstark@100
|
463 int k = std::min ((i + p_pre), N);
|
adamstark@100
|
464 threshold[i] = calculateMeanOfVector (x, 1, k);
|
adamstark@46
|
465 }
|
adamstark@100
|
466
|
adamstark@46
|
467 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
|
adamstark@100
|
468 for (int i = t + 1; i < N - p_post; i++)
|
adamstark@46
|
469 {
|
adamstark@100
|
470 threshold[i] = calculateMeanOfVector (x, i - p_pre, i + p_post);
|
adamstark@46
|
471 }
|
adamstark@100
|
472
|
adamstark@46
|
473 // for last few samples calculate threshold, again, not enough samples to do as above
|
adamstark@100
|
474 for (int i = N - p_post; i < N; i++)
|
adamstark@46
|
475 {
|
adamstark@100
|
476 int k = std::max ((i - p_post), 1);
|
adamstark@100
|
477 threshold[i] = calculateMeanOfVector (x, k, N);
|
adamstark@46
|
478 }
|
adamstark@46
|
479
|
adamstark@46
|
480 // subtract the threshold from the detection function and check that it is not less than 0
|
adamstark@100
|
481 for (int i = 0; i < N; i++)
|
adamstark@46
|
482 {
|
adamstark@100
|
483 x[i] = x[i] - threshold[i];
|
adamstark@100
|
484
|
adamstark@46
|
485 if (x[i] < 0)
|
adamstark@100
|
486 x[i] = 0;
|
adamstark@46
|
487 }
|
adamstark@46
|
488 }
|
adamstark@46
|
489
|
adamstark@51
|
490 //=======================================================================
|
adamstark@57
|
491 void BTrack::calculateOutputOfCombFilterBank()
|
adamstark@46
|
492 {
|
adamstark@100
|
493 std::fill (combFilterBankOutput.begin(), combFilterBankOutput.end(), 0.0);
|
adamstark@100
|
494 int numCombElements = 4;
|
adamstark@46
|
495
|
adamstark@91
|
496 for (int i = 2; i <= 127; i++) // max beat period
|
adamstark@46
|
497 {
|
adamstark@100
|
498 for (int a = 1; a <= numCombElements; a++) // number of comb elements
|
adamstark@46
|
499 {
|
adamstark@100
|
500 for (int b = 1 - a; b <= a - 1; b++) // general state using normalisation of comb elements
|
adamstark@46
|
501 {
|
adamstark@102
|
502 combFilterBankOutput[i-1] += (acf[(a * i + b) - 1] * weightingVector[i - 1]) / (2 * a - 1); // calculate value for comb filter row
|
adamstark@46
|
503 }
|
adamstark@46
|
504 }
|
adamstark@46
|
505 }
|
adamstark@46
|
506 }
|
adamstark@46
|
507
|
adamstark@51
|
508 //=======================================================================
|
adamstark@100
|
509 void BTrack::calculateBalancedACF (std::vector<double>& onsetDetectionFunction)
|
adamstark@46
|
510 {
|
adamstark@88
|
511 int onsetDetectionFunctionLength = 512;
|
adamstark@88
|
512
|
adamstark@93
|
513 #ifdef USE_FFTW
|
adamstark@88
|
514 // copy into complex array and zero pad
|
adamstark@88
|
515 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@88
|
516 {
|
adamstark@88
|
517 if (i < onsetDetectionFunctionLength)
|
adamstark@88
|
518 {
|
adamstark@88
|
519 complexIn[i][0] = onsetDetectionFunction[i];
|
adamstark@88
|
520 complexIn[i][1] = 0.0;
|
adamstark@88
|
521 }
|
adamstark@88
|
522 else
|
adamstark@88
|
523 {
|
adamstark@88
|
524 complexIn[i][0] = 0.0;
|
adamstark@88
|
525 complexIn[i][1] = 0.0;
|
adamstark@88
|
526 }
|
adamstark@88
|
527 }
|
adamstark@88
|
528
|
adamstark@88
|
529 // perform the fft
|
adamstark@91
|
530 fftw_execute (acfForwardFFT);
|
adamstark@88
|
531
|
adamstark@88
|
532 // multiply by complex conjugate
|
adamstark@88
|
533 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@88
|
534 {
|
adamstark@88
|
535 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
|
adamstark@88
|
536 complexOut[i][1] = 0.0;
|
adamstark@88
|
537 }
|
adamstark@88
|
538
|
adamstark@88
|
539 // perform the ifft
|
adamstark@91
|
540 fftw_execute (acfBackwardFFT);
|
adamstark@88
|
541
|
adamstark@93
|
542 #endif
|
adamstark@93
|
543
|
adamstark@93
|
544 #ifdef USE_KISS_FFT
|
adamstark@93
|
545 // copy into complex array and zero pad
|
adamstark@93
|
546 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@93
|
547 {
|
adamstark@93
|
548 if (i < onsetDetectionFunctionLength)
|
adamstark@93
|
549 {
|
adamstark@93
|
550 fftIn[i].r = onsetDetectionFunction[i];
|
adamstark@93
|
551 fftIn[i].i = 0.0;
|
adamstark@93
|
552 }
|
adamstark@93
|
553 else
|
adamstark@93
|
554 {
|
adamstark@93
|
555 fftIn[i].r = 0.0;
|
adamstark@93
|
556 fftIn[i].i = 0.0;
|
adamstark@93
|
557 }
|
adamstark@93
|
558 }
|
adamstark@93
|
559
|
adamstark@93
|
560 // execute kiss fft
|
adamstark@93
|
561 kiss_fft (cfgForwards, fftIn, fftOut);
|
adamstark@93
|
562
|
adamstark@93
|
563 // multiply by complex conjugate
|
adamstark@93
|
564 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@93
|
565 {
|
adamstark@93
|
566 fftOut[i].r = fftOut[i].r * fftOut[i].r + fftOut[i].i * fftOut[i].i;
|
adamstark@93
|
567 fftOut[i].i = 0.0;
|
adamstark@93
|
568 }
|
adamstark@93
|
569
|
adamstark@93
|
570 // perform the ifft
|
adamstark@93
|
571 kiss_fft (cfgBackwards, fftOut, fftIn);
|
adamstark@93
|
572
|
adamstark@93
|
573 #endif
|
adamstark@88
|
574
|
adamstark@88
|
575 double lag = 512;
|
adamstark@88
|
576
|
adamstark@91
|
577 for (int i = 0; i < 512; i++)
|
adamstark@88
|
578 {
|
adamstark@93
|
579 #ifdef USE_FFTW
|
adamstark@88
|
580 // calculate absolute value of result
|
adamstark@91
|
581 double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
|
adamstark@93
|
582 #endif
|
adamstark@88
|
583
|
adamstark@93
|
584 #ifdef USE_KISS_FFT
|
adamstark@93
|
585 // calculate absolute value of result
|
adamstark@93
|
586 double absValue = sqrt (fftIn[i].r * fftIn[i].r + fftIn[i].i * fftIn[i].i);
|
adamstark@93
|
587 #endif
|
adamstark@88
|
588 // divide by inverse lad to deal with scale bias towards small lags
|
adamstark@88
|
589 acf[i] = absValue / lag;
|
adamstark@88
|
590
|
adamstark@88
|
591 // this division by 1024 is technically unnecessary but it ensures the algorithm produces
|
adamstark@88
|
592 // exactly the same ACF output as the old time domain implementation. The time difference is
|
adamstark@88
|
593 // minimal so I decided to keep it
|
adamstark@88
|
594 acf[i] = acf[i] / 1024.;
|
adamstark@88
|
595
|
adamstark@88
|
596 lag = lag - 1.;
|
adamstark@88
|
597 }
|
adamstark@46
|
598 }
|
adamstark@46
|
599
|
adamstark@51
|
600 //=======================================================================
|
adamstark@100
|
601 double BTrack::calculateMeanOfVector (std::vector<double>& vector, int startIndex, int endIndex)
|
adamstark@46
|
602 {
|
adamstark@97
|
603 int length = endIndex - startIndex;
|
adamstark@100
|
604 double sum = std::accumulate (vector.begin() + startIndex, vector.begin() + endIndex, 0.0);
|
adamstark@47
|
605
|
adamstark@47
|
606 if (length > 0)
|
adamstark@97
|
607 return sum / static_cast<double> (length); // average and return
|
adamstark@47
|
608 else
|
adamstark@47
|
609 return 0;
|
adamstark@46
|
610 }
|
adamstark@46
|
611
|
adamstark@51
|
612 //=======================================================================
|
adamstark@100
|
613 void BTrack::normaliseVector (std::vector<double>& vector)
|
adamstark@46
|
614 {
|
adamstark@100
|
615 double sum = std::accumulate (vector.begin(), vector.end(), 0.0);
|
adamstark@46
|
616
|
adamstark@46
|
617 if (sum > 0)
|
adamstark@97
|
618 {
|
adamstark@100
|
619 for (int i = 0; i < vector.size(); i++)
|
adamstark@100
|
620 vector[i] = vector[i] / sum;
|
adamstark@97
|
621 }
|
adamstark@46
|
622 }
|
adamstark@46
|
623
|
adamstark@51
|
624 //=======================================================================
|
adamstark@100
|
625 void BTrack::updateCumulativeScore (double onsetDetectionFunctionSample)
|
adamstark@98
|
626 {
|
adamstark@100
|
627 int windowStart = onsetDFBufferSize - round (2. * beatPeriod);
|
adamstark@100
|
628 int windowEnd = onsetDFBufferSize - round (beatPeriod / 2.);
|
adamstark@100
|
629 int windowSize = windowEnd - windowStart + 1;
|
adamstark@46
|
630
|
adamstark@98
|
631 double w1[windowSize];
|
adamstark@97
|
632 double v = -2. * beatPeriod;
|
adamstark@46
|
633
|
adamstark@46
|
634 // create window
|
adamstark@98
|
635 for (int i = 0; i < windowSize; i++)
|
adamstark@46
|
636 {
|
adamstark@98
|
637 double a = tightness * log (-v / beatPeriod);
|
adamstark@98
|
638 w1[i] = exp ((-1. * a * a) / 2.);
|
adamstark@98
|
639 v = v + 1.;
|
adamstark@46
|
640 }
|
adamstark@46
|
641
|
adamstark@46
|
642 // calculate new cumulative score value
|
adamstark@98
|
643 double maxValue = 0;
|
adamstark@46
|
644 int n = 0;
|
adamstark@100
|
645 for (int i = windowStart; i <= windowEnd; i++)
|
adamstark@46
|
646 {
|
adamstark@102
|
647 double weightedCumulativeScore = cumulativeScore[i] * w1[n];
|
adamstark@46
|
648
|
adamstark@98
|
649 if (weightedCumulativeScore > maxValue)
|
adamstark@98
|
650 maxValue = weightedCumulativeScore;
|
adamstark@98
|
651
|
adamstark@46
|
652 n++;
|
adamstark@46
|
653 }
|
adamstark@46
|
654
|
adamstark@100
|
655 latestCumulativeScoreValue = ((1 - alpha) * onsetDetectionFunctionSample) + (alpha * maxValue);
|
adamstark@91
|
656 cumulativeScore.addSampleToEnd (latestCumulativeScoreValue);
|
adamstark@46
|
657 }
|
adamstark@46
|
658
|
adamstark@51
|
659 //=======================================================================
|
adamstark@57
|
660 void BTrack::predictBeat()
|
adamstark@46
|
661 {
|
adamstark@102
|
662 int beatExpectationWindowSize = (int) beatPeriod;
|
adamstark@102
|
663 double futureCumulativeScore[onsetDFBufferSize + beatExpectationWindowSize];
|
adamstark@102
|
664 double beatExpectationWindow[beatExpectationWindowSize];
|
adamstark@93
|
665
|
adamstark@102
|
666 // copy cumulativeScore to first part of futureCumulativeScore
|
adamstark@58
|
667 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@102
|
668 futureCumulativeScore[i] = cumulativeScore[i];
|
adamstark@102
|
669
|
adamstark@102
|
670 // Create a beat expectation window for predicting future beats from the "future" of the cumulative score.
|
adamstark@102
|
671 // We are making this beat prediction at the midpoint between beats, and so we make a Gaussian
|
adamstark@102
|
672 // weighting centred on the most likely beat position (half a beat period into the future)
|
adamstark@102
|
673 // This is W2 in Adam Stark's PhD thesis, equation 3.6, page 62
|
adamstark@102
|
674
|
adamstark@102
|
675 double v = 1;
|
adamstark@102
|
676 for (int i = 0; i < beatExpectationWindowSize; i++)
|
adamstark@46
|
677 {
|
adamstark@102
|
678 beatExpectationWindow[i] = exp((-1 * pow ((v - (beatPeriod / 2)), 2)) / (2 * pow (beatPeriod / 2, 2)));
|
adamstark@46
|
679 v++;
|
adamstark@46
|
680 }
|
adamstark@46
|
681
|
adamstark@102
|
682 // Create window for "synthesizing" the cumulative score into the future
|
adamstark@102
|
683 // It is a log-Gaussian transition weighting running from from 2 beat periods
|
adamstark@102
|
684 // in the past to half a beat period in the past. It favours the time exactly
|
adamstark@102
|
685 // one beat period in the past
|
adamstark@102
|
686 // This is W1 in Adam Stark's PhD thesis, equation 3.2, page 60
|
adamstark@102
|
687
|
adamstark@102
|
688 v = -2 * beatPeriod;
|
adamstark@102
|
689 int startIndex = onsetDFBufferSize - round (2 * beatPeriod);
|
adamstark@102
|
690 int endIndex = onsetDFBufferSize - round (beatPeriod / 2);
|
adamstark@102
|
691 int pastWindowSize = endIndex - startIndex + 1;
|
adamstark@102
|
692 double logGaussianTransitionWeighting[pastWindowSize];
|
adamstark@46
|
693
|
adamstark@102
|
694 for (int i = 0; i < pastWindowSize; i++)
|
adamstark@46
|
695 {
|
adamstark@102
|
696 logGaussianTransitionWeighting[i] = exp((-1 * pow (tightness * log (-v / beatPeriod), 2) ) / 2);
|
adamstark@102
|
697 v = v + 1;
|
adamstark@46
|
698 }
|
adamstark@46
|
699
|
adamstark@102
|
700 // Calculate the future cumulative score, using the log Gaussian transition weighting
|
adamstark@102
|
701
|
adamstark@102
|
702 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + beatExpectationWindowSize); i++)
|
adamstark@46
|
703 {
|
adamstark@102
|
704 startIndex = i - round (2 * beatPeriod);
|
adamstark@102
|
705 endIndex = i - round (beatPeriod / 2);
|
adamstark@46
|
706
|
adamstark@102
|
707 double maxValue = 0;
|
adamstark@102
|
708 int n = 0;
|
adamstark@102
|
709 for (int k = startIndex; k <= endIndex; k++)
|
adamstark@46
|
710 {
|
adamstark@102
|
711 double weightedCumulativeScore = futureCumulativeScore[k] * logGaussianTransitionWeighting[n];
|
adamstark@46
|
712
|
adamstark@102
|
713 if (weightedCumulativeScore > maxValue)
|
adamstark@102
|
714 maxValue = weightedCumulativeScore;
|
adamstark@102
|
715
|
adamstark@46
|
716 n++;
|
adamstark@46
|
717 }
|
adamstark@46
|
718
|
adamstark@102
|
719 futureCumulativeScore[i] = maxValue;
|
adamstark@46
|
720 }
|
adamstark@46
|
721
|
adamstark@102
|
722 // Predict the next beat, finding the maximum point of the future cumulative score
|
adamstark@102
|
723 // over the next beat, after being weighted by the beat expectation window
|
adamstark@102
|
724
|
adamstark@102
|
725 double maxValue = 0;
|
adamstark@102
|
726 int n = 0;
|
adamstark@46
|
727
|
adamstark@102
|
728 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + beatExpectationWindowSize); i++)
|
adamstark@46
|
729 {
|
adamstark@102
|
730 double weightedCumulativeScore = futureCumulativeScore[i] * beatExpectationWindow[n];
|
adamstark@46
|
731
|
adamstark@102
|
732 if (weightedCumulativeScore > maxValue)
|
adamstark@46
|
733 {
|
adamstark@102
|
734 maxValue = weightedCumulativeScore;
|
adamstark@58
|
735 beatCounter = n;
|
adamstark@46
|
736 }
|
adamstark@46
|
737
|
adamstark@46
|
738 n++;
|
adamstark@46
|
739 }
|
adamstark@46
|
740
|
adamstark@46
|
741 // set next prediction time
|
adamstark@91
|
742 m0 = beatCounter + round (beatPeriod / 2);
|
adamstark@97
|
743 }
|