annotate src/BTrack.cpp @ 55:5e520f59127f

Changed the interface of the algorithm so that onset detection function samples are calculated internally. This makes the call to the algorithm for most cases much simpler. Also added a static function for calculating beat times in seconds based upon sampling frequency, hop size and the current frame number.
author Adam Stark <adamstark@users.noreply.github.com>
date Wed, 22 Jan 2014 18:47:16 +0000
parents 9699024bb3d0
children b6d440942ff6
rev   line source
adamstark@46 1 //=======================================================================
adamstark@46 2 /** @file BTrack.cpp
adamstark@47 3 * @brief BTrack - a real-time beat tracker
adamstark@46 4 * @author Adam Stark
adamstark@46 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46 6 *
adamstark@46 7 * This program is free software: you can redistribute it and/or modify
adamstark@46 8 * it under the terms of the GNU General Public License as published by
adamstark@46 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@46 10 * (at your option) any later version.
adamstark@46 11 *
adamstark@46 12 * This program is distributed in the hope that it will be useful,
adamstark@46 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46 15 * GNU General Public License for more details.
adamstark@46 16 *
adamstark@46 17 * You should have received a copy of the GNU General Public License
adamstark@46 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@46 19 */
adamstark@46 20 //=======================================================================
adamstark@46 21
adamstark@46 22 #include <cmath>
adamstark@52 23 #include <algorithm>
adamstark@46 24 #include "BTrack.h"
adamstark@46 25 #include "samplerate.h"
adamstark@46 26
adamstark@55 27 //=======================================================================
adamstark@55 28 BTrack::BTrack() : odf(512,1024,6,1)
adamstark@55 29 {
adamstark@55 30 initialise(512, 1024);
adamstark@55 31 }
adamstark@46 32
adamstark@51 33 //=======================================================================
adamstark@55 34 BTrack::BTrack(int hopSize) : odf(hopSize,2*hopSize,6,1)
adamstark@46 35 {
adamstark@55 36 initialise(hopSize, 2*hopSize);
adamstark@55 37 }
adamstark@55 38
adamstark@55 39 //=======================================================================
adamstark@55 40 BTrack::BTrack(int hopSize,int frameSize) : odf(hopSize,frameSize,6,1)
adamstark@55 41 {
adamstark@55 42 initialise(hopSize, frameSize);
adamstark@55 43 }
adamstark@55 44
adamstark@55 45 //=======================================================================
adamstark@55 46 BTrack::~BTrack()
adamstark@55 47 {
adamstark@55 48
adamstark@55 49 }
adamstark@55 50
adamstark@55 51 //=======================================================================
adamstark@55 52 double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs)
adamstark@55 53 {
adamstark@55 54 double hop = (double) hopSize;
adamstark@55 55 double samplingFrequency = (double) fs;
adamstark@55 56 double frameNum = (double) frameNumber;
adamstark@55 57
adamstark@55 58 return ((hop / samplingFrequency) * frameNum);
adamstark@55 59 }
adamstark@55 60
adamstark@55 61 //=======================================================================
adamstark@55 62 double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs)
adamstark@55 63 {
adamstark@55 64 long frameNum = (long) frameNumber;
adamstark@55 65
adamstark@55 66 return getBeatTimeInSeconds(frameNum, hopSize, fs);
adamstark@55 67 }
adamstark@55 68
adamstark@55 69
adamstark@55 70
adamstark@55 71 //=======================================================================
adamstark@55 72 void BTrack::initialise(int hopSize, int frameSize)
adamstark@55 73 {
adamstark@55 74 double rayparam = 43;
adamstark@54 75 double pi = 3.14159265;
adamstark@46 76
adamstark@46 77
adamstark@46 78 // initialise parameters
adamstark@46 79 tightness = 5;
adamstark@46 80 alpha = 0.9;
adamstark@46 81 tempo = 120;
adamstark@46 82 est_tempo = 120;
adamstark@46 83 p_fact = 60.*44100./512.;
adamstark@46 84
adamstark@46 85 m0 = 10;
adamstark@46 86 beat = -1;
adamstark@46 87
adamstark@46 88 playbeat = 0;
adamstark@46 89
adamstark@46 90
adamstark@46 91
adamstark@46 92
adamstark@46 93 // create rayleigh weighting vector
adamstark@46 94 for (int n = 0;n < 128;n++)
adamstark@46 95 {
adamstark@54 96 wv[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
adamstark@46 97 }
adamstark@46 98
adamstark@46 99 // initialise prev_delta
adamstark@46 100 for (int i = 0;i < 41;i++)
adamstark@46 101 {
adamstark@46 102 prev_delta[i] = 1;
adamstark@46 103 }
adamstark@46 104
adamstark@54 105 double t_mu = 41/2;
adamstark@54 106 double m_sig;
adamstark@54 107 double x;
adamstark@46 108 // create tempo transition matrix
adamstark@46 109 m_sig = 41/8;
adamstark@46 110 for (int i = 0;i < 41;i++)
adamstark@46 111 {
adamstark@46 112 for (int j = 0;j < 41;j++)
adamstark@46 113 {
adamstark@46 114 x = j+1;
adamstark@46 115 t_mu = i+1;
adamstark@46 116 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46 117 }
adamstark@55 118 }
adamstark@46 119
adamstark@46 120 // tempo is not fixed
adamstark@46 121 tempofix = 0;
adamstark@55 122
adamstark@55 123 // initialise algorithm given the hopsize
adamstark@55 124 setHopSize(hopSize);
adamstark@46 125 }
adamstark@46 126
adamstark@51 127 //=======================================================================
adamstark@55 128 void BTrack :: setHopSize(int hopSize)
adamstark@46 129 {
adamstark@55 130 framesize = hopSize;
adamstark@55 131 dfbuffer_size = (512*512)/hopSize; // calculate df buffer size
adamstark@46 132
adamstark@55 133 bperiod = round(60/((((double) hopSize)/44100)*tempo));
adamstark@46 134
adamstark@54 135 dfbuffer = new double[dfbuffer_size]; // create df_buffer
adamstark@54 136 cumscore = new double[dfbuffer_size]; // create cumscore
adamstark@46 137
adamstark@46 138
adamstark@46 139 // initialise df_buffer to zeros
adamstark@46 140 for (int i = 0;i < dfbuffer_size;i++)
adamstark@46 141 {
adamstark@46 142 dfbuffer[i] = 0;
adamstark@46 143 cumscore[i] = 0;
adamstark@46 144
adamstark@46 145
adamstark@46 146 if ((i % ((int) round(bperiod))) == 0)
adamstark@46 147 {
adamstark@46 148 dfbuffer[i] = 1;
adamstark@46 149 }
adamstark@46 150 }
adamstark@46 151 }
adamstark@46 152
adamstark@51 153 //=======================================================================
adamstark@55 154 void BTrack::processAudioFrame(double *frame)
adamstark@55 155 {
adamstark@55 156 // calculate the onset detection function sample for the frame
adamstark@55 157 double sample = odf.getDFsample(frame);
adamstark@55 158
adamstark@55 159 // add a tiny constant to the sample to stop it from ever going
adamstark@55 160 // to zero. this is to avoid problems further down the line
adamstark@55 161 sample = sample + 0.0001;
adamstark@55 162
adamstark@55 163 // process the new onset detection function sample in the beat tracking algorithm
adamstark@55 164 processOnsetDetectionFunctionSample(sample);
adamstark@55 165 }
adamstark@55 166
adamstark@55 167 //=======================================================================
adamstark@55 168 void BTrack::processOnsetDetectionFunctionSample(double newSample)
adamstark@46 169 {
adamstark@46 170 m0--;
adamstark@46 171 beat--;
adamstark@46 172 playbeat = 0;
adamstark@46 173
adamstark@46 174 // move all samples back one step
adamstark@46 175 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@46 176 {
adamstark@46 177 dfbuffer[i] = dfbuffer[i+1];
adamstark@46 178 }
adamstark@46 179
adamstark@46 180 // add new sample at the end
adamstark@55 181 dfbuffer[dfbuffer_size-1] = newSample;
adamstark@46 182
adamstark@46 183 // update cumulative score
adamstark@55 184 updatecumscore(newSample);
adamstark@46 185
adamstark@46 186 // if we are halfway between beats
adamstark@46 187 if (m0 == 0)
adamstark@46 188 {
adamstark@46 189 predictbeat();
adamstark@46 190 }
adamstark@46 191
adamstark@46 192 // if we are at a beat
adamstark@46 193 if (beat == 0)
adamstark@46 194 {
adamstark@46 195 playbeat = 1; // indicate a beat should be output
adamstark@46 196
adamstark@46 197 // recalculate the tempo
adamstark@46 198 dfconvert();
adamstark@46 199 calcTempo();
adamstark@46 200 }
adamstark@46 201 }
adamstark@46 202
adamstark@51 203 //=======================================================================
adamstark@54 204 void BTrack :: settempo(double tempo)
adamstark@46 205 {
adamstark@46 206
adamstark@46 207 /////////// TEMPO INDICATION RESET //////////////////
adamstark@46 208
adamstark@46 209 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 210 while (tempo > 160)
adamstark@46 211 {
adamstark@46 212 tempo = tempo/2;
adamstark@46 213 }
adamstark@46 214
adamstark@46 215 while (tempo < 80)
adamstark@46 216 {
adamstark@46 217 tempo = tempo * 2;
adamstark@46 218 }
adamstark@46 219
adamstark@46 220 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 221 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 222
adamstark@46 223 // now set previous tempo observations to zero
adamstark@46 224 for (int i=0;i < 41;i++)
adamstark@46 225 {
adamstark@46 226 prev_delta[i] = 0;
adamstark@46 227 }
adamstark@46 228
adamstark@46 229 // set desired tempo index to 1
adamstark@46 230 prev_delta[tempo_index] = 1;
adamstark@46 231
adamstark@46 232
adamstark@46 233 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46 234
adamstark@46 235 // calculate new beat period
adamstark@54 236 int new_bperiod = (int) round(60/((((double) framesize)/44100)*tempo));
adamstark@46 237
adamstark@46 238 int bcounter = 1;
adamstark@46 239 // initialise df_buffer to zeros
adamstark@46 240 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@46 241 {
adamstark@46 242 if (bcounter == 1)
adamstark@46 243 {
adamstark@46 244 cumscore[i] = 150;
adamstark@46 245 dfbuffer[i] = 150;
adamstark@46 246 }
adamstark@46 247 else
adamstark@46 248 {
adamstark@46 249 cumscore[i] = 10;
adamstark@46 250 dfbuffer[i] = 10;
adamstark@46 251 }
adamstark@46 252
adamstark@46 253 bcounter++;
adamstark@46 254
adamstark@46 255 if (bcounter > new_bperiod)
adamstark@46 256 {
adamstark@46 257 bcounter = 1;
adamstark@46 258 }
adamstark@46 259 }
adamstark@46 260
adamstark@46 261 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46 262
adamstark@46 263 // beat is now
adamstark@46 264 beat = 0;
adamstark@46 265
adamstark@46 266 // offbeat is half of new beat period away
adamstark@54 267 m0 = (int) round(((double) new_bperiod)/2);
adamstark@46 268 }
adamstark@46 269
adamstark@51 270 //=======================================================================
adamstark@54 271 void BTrack :: fixtempo(double tempo)
adamstark@46 272 {
adamstark@46 273 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 274 while (tempo > 160)
adamstark@46 275 {
adamstark@46 276 tempo = tempo/2;
adamstark@46 277 }
adamstark@46 278
adamstark@46 279 while (tempo < 80)
adamstark@46 280 {
adamstark@46 281 tempo = tempo * 2;
adamstark@46 282 }
adamstark@46 283
adamstark@46 284 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 285 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 286
adamstark@46 287 // now set previous fixed previous tempo observation values to zero
adamstark@46 288 for (int i=0;i < 41;i++)
adamstark@46 289 {
adamstark@46 290 prev_delta_fix[i] = 0;
adamstark@46 291 }
adamstark@46 292
adamstark@46 293 // set desired tempo index to 1
adamstark@46 294 prev_delta_fix[tempo_index] = 1;
adamstark@46 295
adamstark@46 296 // set the tempo fix flag
adamstark@46 297 tempofix = 1;
adamstark@46 298 }
adamstark@46 299
adamstark@51 300 //=======================================================================
adamstark@46 301 void BTrack :: unfixtempo()
adamstark@46 302 {
adamstark@46 303 // set the tempo fix flag
adamstark@46 304 tempofix = 0;
adamstark@46 305 }
adamstark@46 306
adamstark@51 307 //=======================================================================
adamstark@46 308 void BTrack :: dfconvert()
adamstark@46 309 {
adamstark@46 310 float output[512];
adamstark@54 311 float input[dfbuffer_size];
adamstark@54 312
adamstark@54 313 for (int i = 0;i < dfbuffer_size;i++)
adamstark@54 314 {
adamstark@54 315 input[i] = (float) dfbuffer[i];
adamstark@54 316 }
adamstark@46 317
adamstark@46 318 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@46 319 int BUFFER_LEN = dfbuffer_size;
adamstark@46 320 int output_len;
adamstark@46 321 SRC_DATA src_data ;
adamstark@46 322
adamstark@46 323 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@46 324 output_len = 512;
adamstark@46 325
adamstark@54 326 src_data.data_in = input;
adamstark@46 327 src_data.input_frames = BUFFER_LEN;
adamstark@46 328
adamstark@46 329 src_data.src_ratio = src_ratio;
adamstark@46 330
adamstark@46 331 src_data.data_out = output;
adamstark@46 332 src_data.output_frames = output_len;
adamstark@46 333
adamstark@46 334 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@46 335
adamstark@46 336 for (int i = 0;i < output_len;i++)
adamstark@46 337 {
adamstark@54 338 df512[i] = (double) src_data.data_out[i];
adamstark@46 339 }
adamstark@46 340 }
adamstark@46 341
adamstark@51 342 //=======================================================================
adamstark@46 343 void BTrack :: calcTempo()
adamstark@46 344 {
adamstark@46 345 // adaptive threshold on input
adamstark@46 346 adapt_thresh(df512,512);
adamstark@46 347
adamstark@46 348 // calculate auto-correlation function of detection function
adamstark@46 349 acf_bal(df512);
adamstark@46 350
adamstark@46 351 // calculate output of comb filterbank
adamstark@46 352 getrcfoutput();
adamstark@46 353
adamstark@46 354
adamstark@46 355 // adaptive threshold on rcf
adamstark@46 356 adapt_thresh(rcf,128);
adamstark@46 357
adamstark@46 358
adamstark@46 359 int t_index;
adamstark@46 360 int t_index2;
adamstark@46 361 // calculate tempo observation vector from bperiod observation vector
adamstark@46 362 for (int i = 0;i < 41;i++)
adamstark@46 363 {
adamstark@54 364 t_index = (int) round(p_fact / ((double) ((2*i)+80)));
adamstark@54 365 t_index2 = (int) round(p_fact / ((double) ((4*i)+160)));
adamstark@46 366
adamstark@46 367
adamstark@46 368 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@46 369 }
adamstark@46 370
adamstark@46 371
adamstark@54 372 double maxval;
adamstark@54 373 double maxind;
adamstark@54 374 double curval;
adamstark@46 375
adamstark@46 376 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@46 377 if (tempofix == 1)
adamstark@46 378 {
adamstark@46 379 for (int k = 0;k < 41;k++)
adamstark@46 380 {
adamstark@46 381 prev_delta[k] = prev_delta_fix[k];
adamstark@46 382 }
adamstark@46 383 }
adamstark@46 384
adamstark@46 385 for (int j=0;j < 41;j++)
adamstark@46 386 {
adamstark@46 387 maxval = -1;
adamstark@46 388 for (int i = 0;i < 41;i++)
adamstark@46 389 {
adamstark@46 390 curval = prev_delta[i]*t_tmat[i][j];
adamstark@46 391
adamstark@46 392 if (curval > maxval)
adamstark@46 393 {
adamstark@46 394 maxval = curval;
adamstark@46 395 }
adamstark@46 396 }
adamstark@46 397
adamstark@46 398 delta[j] = maxval*t_obs[j];
adamstark@46 399 }
adamstark@46 400
adamstark@46 401
adamstark@46 402 normalise(delta,41);
adamstark@46 403
adamstark@46 404 maxind = -1;
adamstark@46 405 maxval = -1;
adamstark@46 406
adamstark@46 407 for (int j=0;j < 41;j++)
adamstark@46 408 {
adamstark@46 409 if (delta[j] > maxval)
adamstark@46 410 {
adamstark@46 411 maxval = delta[j];
adamstark@46 412 maxind = j;
adamstark@46 413 }
adamstark@46 414
adamstark@46 415 prev_delta[j] = delta[j];
adamstark@46 416 }
adamstark@46 417
adamstark@54 418 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((double) framesize)));
adamstark@46 419
adamstark@46 420 if (bperiod > 0)
adamstark@46 421 {
adamstark@54 422 est_tempo = 60.0/((((double) framesize) / 44100.0)*bperiod);
adamstark@46 423 }
adamstark@46 424
adamstark@46 425 //cout << bperiod << endl;
adamstark@46 426 }
adamstark@46 427
adamstark@51 428 //=======================================================================
adamstark@54 429 void BTrack :: adapt_thresh(double *x,int N)
adamstark@46 430 {
adamstark@46 431 //int N = 512; // length of df
adamstark@46 432 int i = 0;
adamstark@46 433 int k,t = 0;
adamstark@54 434 double x_thresh[N];
adamstark@46 435
adamstark@46 436 int p_post = 7;
adamstark@46 437 int p_pre = 8;
adamstark@46 438
adamstark@52 439 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46 440
adamstark@46 441 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46 442 for (i = 0;i <= t;i++)
adamstark@46 443 {
adamstark@52 444 k = std::min((i+p_pre),N);
adamstark@46 445 x_thresh[i] = mean_array(x,1,k);
adamstark@46 446 }
adamstark@46 447 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46 448 for (i = t+1;i < N-p_post;i++)
adamstark@46 449 {
adamstark@46 450 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@46 451 }
adamstark@46 452 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46 453 for (i = N-p_post;i < N;i++)
adamstark@46 454 {
adamstark@52 455 k = std::max((i-p_post),1);
adamstark@46 456 x_thresh[i] = mean_array(x,k,N);
adamstark@46 457 }
adamstark@46 458
adamstark@46 459 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@46 460 for (i = 0;i < N;i++)
adamstark@46 461 {
adamstark@46 462 x[i] = x[i] - x_thresh[i];
adamstark@46 463 if (x[i] < 0)
adamstark@46 464 {
adamstark@46 465 x[i] = 0;
adamstark@46 466 }
adamstark@46 467 }
adamstark@46 468 }
adamstark@46 469
adamstark@51 470 //=======================================================================
adamstark@46 471 void BTrack :: getrcfoutput()
adamstark@46 472 {
adamstark@46 473 int numelem;
adamstark@46 474
adamstark@46 475 for (int i = 0;i < 128;i++)
adamstark@46 476 {
adamstark@46 477 rcf[i] = 0;
adamstark@46 478 }
adamstark@46 479
adamstark@46 480 numelem = 4;
adamstark@46 481
adamstark@46 482 for (int i = 2;i <= 127;i++) // max beat period
adamstark@46 483 {
adamstark@46 484 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@46 485 {
adamstark@46 486 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@46 487 {
adamstark@46 488 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46 489 }
adamstark@46 490 }
adamstark@46 491 }
adamstark@46 492 }
adamstark@46 493
adamstark@51 494 //=======================================================================
adamstark@54 495 void BTrack :: acf_bal(double *df_thresh)
adamstark@46 496 {
adamstark@46 497 int l, n = 0;
adamstark@54 498 double sum, tmp;
adamstark@46 499
adamstark@46 500 // for l lags from 0-511
adamstark@46 501 for (l = 0;l < 512;l++)
adamstark@46 502 {
adamstark@46 503 sum = 0;
adamstark@46 504
adamstark@46 505 // for n samples from 0 - (512-lag)
adamstark@46 506 for (n = 0;n < (512-l);n++)
adamstark@46 507 {
adamstark@46 508 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@46 509 sum = sum + tmp; // add to sum
adamstark@46 510 }
adamstark@46 511
adamstark@46 512 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@46 513 }
adamstark@46 514 }
adamstark@46 515
adamstark@51 516 //=======================================================================
adamstark@54 517 double BTrack :: mean_array(double *array,int start,int end)
adamstark@46 518 {
adamstark@46 519 int i;
adamstark@47 520 double sum = 0;
adamstark@47 521
adamstark@47 522 int length = end - start;
adamstark@46 523
adamstark@46 524 // find sum
adamstark@47 525 for (i = start;i < end;i++)
adamstark@46 526 {
adamstark@46 527 sum = sum + array[i];
adamstark@46 528 }
adamstark@46 529
adamstark@47 530 if (length > 0)
adamstark@47 531 {
adamstark@47 532 return sum / length; // average and return
adamstark@47 533 }
adamstark@47 534 else
adamstark@47 535 {
adamstark@47 536 return 0;
adamstark@47 537 }
adamstark@46 538 }
adamstark@46 539
adamstark@51 540 //=======================================================================
adamstark@54 541 void BTrack :: normalise(double *array,int N)
adamstark@46 542 {
adamstark@46 543 double sum = 0;
adamstark@46 544
adamstark@46 545 for (int i = 0;i < N;i++)
adamstark@46 546 {
adamstark@46 547 if (array[i] > 0)
adamstark@46 548 {
adamstark@46 549 sum = sum + array[i];
adamstark@46 550 }
adamstark@46 551 }
adamstark@46 552
adamstark@46 553 if (sum > 0)
adamstark@46 554 {
adamstark@46 555 for (int i = 0;i < N;i++)
adamstark@46 556 {
adamstark@46 557 array[i] = array[i] / sum;
adamstark@46 558 }
adamstark@46 559 }
adamstark@46 560 }
adamstark@46 561
adamstark@51 562 //=======================================================================
adamstark@54 563 void BTrack :: updatecumscore(double df_sample)
adamstark@46 564 {
adamstark@46 565 int start, end, winsize;
adamstark@54 566 double max;
adamstark@46 567
adamstark@46 568 start = dfbuffer_size - round(2*bperiod);
adamstark@46 569 end = dfbuffer_size - round(bperiod/2);
adamstark@46 570 winsize = end-start+1;
adamstark@46 571
adamstark@54 572 double w1[winsize];
adamstark@54 573 double v = -2*bperiod;
adamstark@54 574 double wcumscore;
adamstark@46 575
adamstark@46 576
adamstark@46 577 // create window
adamstark@46 578 for (int i = 0;i < winsize;i++)
adamstark@46 579 {
adamstark@46 580 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@46 581 v = v+1;
adamstark@46 582 }
adamstark@46 583
adamstark@46 584 // calculate new cumulative score value
adamstark@46 585 max = 0;
adamstark@46 586 int n = 0;
adamstark@46 587 for (int i=start;i <= end;i++)
adamstark@46 588 {
adamstark@46 589 wcumscore = cumscore[i]*w1[n];
adamstark@46 590
adamstark@46 591 if (wcumscore > max)
adamstark@46 592 {
adamstark@46 593 max = wcumscore;
adamstark@46 594 }
adamstark@46 595 n++;
adamstark@46 596 }
adamstark@46 597
adamstark@46 598
adamstark@46 599 // shift cumulative score back one
adamstark@46 600 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@46 601 {
adamstark@46 602 cumscore[i] = cumscore[i+1];
adamstark@46 603 }
adamstark@46 604
adamstark@46 605 // add new value to cumulative score
adamstark@46 606 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@46 607
adamstark@46 608 cscoreval = cumscore[dfbuffer_size-1];
adamstark@46 609
adamstark@46 610 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@46 611
adamstark@46 612 }
adamstark@46 613
adamstark@51 614 //=======================================================================
adamstark@46 615 void BTrack :: predictbeat()
adamstark@46 616 {
adamstark@46 617 int winsize = (int) bperiod;
adamstark@54 618 double fcumscore[dfbuffer_size + winsize];
adamstark@54 619 double w2[winsize];
adamstark@46 620 // copy cumscore to first part of fcumscore
adamstark@46 621 for (int i = 0;i < dfbuffer_size;i++)
adamstark@46 622 {
adamstark@46 623 fcumscore[i] = cumscore[i];
adamstark@46 624 }
adamstark@46 625
adamstark@46 626 // create future window
adamstark@54 627 double v = 1;
adamstark@46 628 for (int i = 0;i < winsize;i++)
adamstark@46 629 {
adamstark@46 630 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@46 631 v++;
adamstark@46 632 }
adamstark@46 633
adamstark@46 634 // create past window
adamstark@46 635 v = -2*bperiod;
adamstark@46 636 int start = dfbuffer_size - round(2*bperiod);
adamstark@46 637 int end = dfbuffer_size - round(bperiod/2);
adamstark@46 638 int pastwinsize = end-start+1;
adamstark@54 639 double w1[pastwinsize];
adamstark@46 640
adamstark@46 641 for (int i = 0;i < pastwinsize;i++)
adamstark@46 642 {
adamstark@46 643 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@46 644 v = v+1;
adamstark@46 645 }
adamstark@46 646
adamstark@46 647
adamstark@46 648
adamstark@46 649 // calculate future cumulative score
adamstark@54 650 double max;
adamstark@46 651 int n;
adamstark@54 652 double wcumscore;
adamstark@46 653 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46 654 {
adamstark@46 655 start = i - round(2*bperiod);
adamstark@46 656 end = i - round(bperiod/2);
adamstark@46 657
adamstark@46 658 max = 0;
adamstark@46 659 n = 0;
adamstark@46 660 for (int k=start;k <= end;k++)
adamstark@46 661 {
adamstark@46 662 wcumscore = fcumscore[k]*w1[n];
adamstark@46 663
adamstark@46 664 if (wcumscore > max)
adamstark@46 665 {
adamstark@46 666 max = wcumscore;
adamstark@46 667 }
adamstark@46 668 n++;
adamstark@46 669 }
adamstark@46 670
adamstark@46 671 fcumscore[i] = max;
adamstark@46 672 }
adamstark@46 673
adamstark@46 674
adamstark@46 675 // predict beat
adamstark@46 676 max = 0;
adamstark@46 677 n = 0;
adamstark@46 678
adamstark@46 679 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46 680 {
adamstark@46 681 wcumscore = fcumscore[i]*w2[n];
adamstark@46 682
adamstark@46 683 if (wcumscore > max)
adamstark@46 684 {
adamstark@46 685 max = wcumscore;
adamstark@46 686 beat = n;
adamstark@46 687 }
adamstark@46 688
adamstark@46 689 n++;
adamstark@46 690 }
adamstark@46 691
adamstark@46 692 // set next prediction time
adamstark@46 693 m0 = beat+round(bperiod/2);
adamstark@46 694
adamstark@46 695
adamstark@46 696 }