annotate src/BTrack.cpp @ 51:68d01fea1e8d

Added a unit testing project, and did some commenting. Also moved python-module into a modules-and-plug-ins folder
author Adam Stark <adamstark@users.noreply.github.com>
date Tue, 21 Jan 2014 10:24:33 +0000
parents bb3803edaa17
children 45231107c9d6
rev   line source
adamstark@46 1 //=======================================================================
adamstark@46 2 /** @file BTrack.cpp
adamstark@47 3 * @brief BTrack - a real-time beat tracker
adamstark@46 4 * @author Adam Stark
adamstark@46 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46 6 *
adamstark@46 7 * This program is free software: you can redistribute it and/or modify
adamstark@46 8 * it under the terms of the GNU General Public License as published by
adamstark@46 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@46 10 * (at your option) any later version.
adamstark@46 11 *
adamstark@46 12 * This program is distributed in the hope that it will be useful,
adamstark@46 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46 15 * GNU General Public License for more details.
adamstark@46 16 *
adamstark@46 17 * You should have received a copy of the GNU General Public License
adamstark@46 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@46 19 */
adamstark@46 20 //=======================================================================
adamstark@46 21
adamstark@46 22 #include <iostream>
adamstark@46 23 #include <cmath>
adamstark@46 24 #include "BTrack.h"
adamstark@46 25 #include "samplerate.h"
adamstark@46 26 using namespace std;
adamstark@46 27
adamstark@46 28
adamstark@46 29
adamstark@46 30
adamstark@51 31 //=======================================================================
adamstark@46 32 BTrack :: BTrack()
adamstark@46 33 {
adamstark@46 34 float rayparam = 43;
adamstark@46 35 float pi = 3.14159265;
adamstark@46 36
adamstark@46 37
adamstark@46 38 // initialise parameters
adamstark@46 39 tightness = 5;
adamstark@46 40 alpha = 0.9;
adamstark@46 41 tempo = 120;
adamstark@46 42 est_tempo = 120;
adamstark@46 43 p_fact = 60.*44100./512.;
adamstark@46 44
adamstark@46 45 m0 = 10;
adamstark@46 46 beat = -1;
adamstark@46 47
adamstark@46 48 playbeat = 0;
adamstark@46 49
adamstark@46 50
adamstark@46 51
adamstark@46 52
adamstark@46 53 // create rayleigh weighting vector
adamstark@46 54 for (int n = 0;n < 128;n++)
adamstark@46 55 {
adamstark@46 56 wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2)));
adamstark@46 57 }
adamstark@46 58
adamstark@46 59 // initialise prev_delta
adamstark@46 60 for (int i = 0;i < 41;i++)
adamstark@46 61 {
adamstark@46 62 prev_delta[i] = 1;
adamstark@46 63 }
adamstark@46 64
adamstark@46 65 float t_mu = 41/2;
adamstark@46 66 float m_sig;
adamstark@46 67 float x;
adamstark@46 68 // create tempo transition matrix
adamstark@46 69 m_sig = 41/8;
adamstark@46 70 for (int i = 0;i < 41;i++)
adamstark@46 71 {
adamstark@46 72 for (int j = 0;j < 41;j++)
adamstark@46 73 {
adamstark@46 74 x = j+1;
adamstark@46 75 t_mu = i+1;
adamstark@46 76 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46 77 }
adamstark@46 78 }
adamstark@46 79
adamstark@46 80 // tempo is not fixed
adamstark@46 81 tempofix = 0;
adamstark@46 82 }
adamstark@46 83
adamstark@51 84 //=======================================================================
adamstark@46 85 BTrack :: ~BTrack()
adamstark@46 86 {
adamstark@46 87
adamstark@46 88 }
adamstark@46 89
adamstark@51 90
adamstark@51 91
adamstark@51 92 //=======================================================================
adamstark@46 93 void BTrack :: initialise(int fsize)
adamstark@46 94 {
adamstark@46 95 framesize = fsize;
adamstark@46 96 dfbuffer_size = (512*512)/fsize; // calculate df buffer size
adamstark@46 97
adamstark@46 98 bperiod = round(60/((((float) fsize)/44100)*tempo));
adamstark@46 99
adamstark@46 100 dfbuffer = new float[dfbuffer_size]; // create df_buffer
adamstark@46 101 cumscore = new float[dfbuffer_size]; // create cumscore
adamstark@46 102
adamstark@46 103
adamstark@46 104 // initialise df_buffer to zeros
adamstark@46 105 for (int i = 0;i < dfbuffer_size;i++)
adamstark@46 106 {
adamstark@46 107 dfbuffer[i] = 0;
adamstark@46 108 cumscore[i] = 0;
adamstark@46 109
adamstark@46 110
adamstark@46 111 if ((i % ((int) round(bperiod))) == 0)
adamstark@46 112 {
adamstark@46 113 dfbuffer[i] = 1;
adamstark@46 114 }
adamstark@46 115 }
adamstark@46 116 }
adamstark@46 117
adamstark@51 118 //=======================================================================
adamstark@46 119 void BTrack :: process(float df_sample)
adamstark@46 120 {
adamstark@46 121 m0--;
adamstark@46 122 beat--;
adamstark@46 123 playbeat = 0;
adamstark@46 124
adamstark@46 125 // move all samples back one step
adamstark@46 126 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@46 127 {
adamstark@46 128 dfbuffer[i] = dfbuffer[i+1];
adamstark@46 129 }
adamstark@46 130
adamstark@46 131 // add new sample at the end
adamstark@46 132 dfbuffer[dfbuffer_size-1] = df_sample;
adamstark@46 133
adamstark@46 134 // update cumulative score
adamstark@46 135 updatecumscore(df_sample);
adamstark@46 136
adamstark@46 137 // if we are halfway between beats
adamstark@46 138 if (m0 == 0)
adamstark@46 139 {
adamstark@46 140 predictbeat();
adamstark@46 141 }
adamstark@46 142
adamstark@46 143 // if we are at a beat
adamstark@46 144 if (beat == 0)
adamstark@46 145 {
adamstark@46 146 playbeat = 1; // indicate a beat should be output
adamstark@46 147
adamstark@46 148 // recalculate the tempo
adamstark@46 149 dfconvert();
adamstark@46 150 calcTempo();
adamstark@46 151 }
adamstark@46 152 }
adamstark@46 153
adamstark@51 154 //=======================================================================
adamstark@46 155 void BTrack :: settempo(float tempo)
adamstark@46 156 {
adamstark@46 157
adamstark@46 158 /////////// TEMPO INDICATION RESET //////////////////
adamstark@46 159
adamstark@46 160 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 161 while (tempo > 160)
adamstark@46 162 {
adamstark@46 163 tempo = tempo/2;
adamstark@46 164 }
adamstark@46 165
adamstark@46 166 while (tempo < 80)
adamstark@46 167 {
adamstark@46 168 tempo = tempo * 2;
adamstark@46 169 }
adamstark@46 170
adamstark@46 171 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 172 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 173
adamstark@46 174 // now set previous tempo observations to zero
adamstark@46 175 for (int i=0;i < 41;i++)
adamstark@46 176 {
adamstark@46 177 prev_delta[i] = 0;
adamstark@46 178 }
adamstark@46 179
adamstark@46 180 // set desired tempo index to 1
adamstark@46 181 prev_delta[tempo_index] = 1;
adamstark@46 182
adamstark@46 183
adamstark@46 184 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46 185
adamstark@46 186 // calculate new beat period
adamstark@46 187 int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo));
adamstark@46 188
adamstark@46 189 int bcounter = 1;
adamstark@46 190 // initialise df_buffer to zeros
adamstark@46 191 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@46 192 {
adamstark@46 193 if (bcounter == 1)
adamstark@46 194 {
adamstark@46 195 cumscore[i] = 150;
adamstark@46 196 dfbuffer[i] = 150;
adamstark@46 197 }
adamstark@46 198 else
adamstark@46 199 {
adamstark@46 200 cumscore[i] = 10;
adamstark@46 201 dfbuffer[i] = 10;
adamstark@46 202 }
adamstark@46 203
adamstark@46 204 bcounter++;
adamstark@46 205
adamstark@46 206 if (bcounter > new_bperiod)
adamstark@46 207 {
adamstark@46 208 bcounter = 1;
adamstark@46 209 }
adamstark@46 210 }
adamstark@46 211
adamstark@46 212 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46 213
adamstark@46 214 // beat is now
adamstark@46 215 beat = 0;
adamstark@46 216
adamstark@46 217 // offbeat is half of new beat period away
adamstark@46 218 m0 = (int) round(((float) new_bperiod)/2);
adamstark@46 219 }
adamstark@46 220
adamstark@51 221 //=======================================================================
adamstark@46 222 void BTrack :: fixtempo(float tempo)
adamstark@46 223 {
adamstark@46 224 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 225 while (tempo > 160)
adamstark@46 226 {
adamstark@46 227 tempo = tempo/2;
adamstark@46 228 }
adamstark@46 229
adamstark@46 230 while (tempo < 80)
adamstark@46 231 {
adamstark@46 232 tempo = tempo * 2;
adamstark@46 233 }
adamstark@46 234
adamstark@46 235 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 236 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 237
adamstark@46 238 // now set previous fixed previous tempo observation values to zero
adamstark@46 239 for (int i=0;i < 41;i++)
adamstark@46 240 {
adamstark@46 241 prev_delta_fix[i] = 0;
adamstark@46 242 }
adamstark@46 243
adamstark@46 244 // set desired tempo index to 1
adamstark@46 245 prev_delta_fix[tempo_index] = 1;
adamstark@46 246
adamstark@46 247 // set the tempo fix flag
adamstark@46 248 tempofix = 1;
adamstark@46 249 }
adamstark@46 250
adamstark@51 251 //=======================================================================
adamstark@46 252 void BTrack :: unfixtempo()
adamstark@46 253 {
adamstark@46 254 // set the tempo fix flag
adamstark@46 255 tempofix = 0;
adamstark@46 256 }
adamstark@46 257
adamstark@51 258 //=======================================================================
adamstark@46 259 void BTrack :: dfconvert()
adamstark@46 260 {
adamstark@46 261 float output[512];
adamstark@46 262
adamstark@46 263 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@46 264 int BUFFER_LEN = dfbuffer_size;
adamstark@46 265 int output_len;
adamstark@46 266 SRC_DATA src_data ;
adamstark@46 267
adamstark@46 268 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@46 269 output_len = 512;
adamstark@46 270
adamstark@46 271 src_data.data_in = dfbuffer;
adamstark@46 272 src_data.input_frames = BUFFER_LEN;
adamstark@46 273
adamstark@46 274 src_data.src_ratio = src_ratio;
adamstark@46 275
adamstark@46 276 src_data.data_out = output;
adamstark@46 277 src_data.output_frames = output_len;
adamstark@46 278
adamstark@46 279 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@46 280
adamstark@46 281 for (int i = 0;i < output_len;i++)
adamstark@46 282 {
adamstark@46 283 df512[i] = src_data.data_out[i];
adamstark@46 284 }
adamstark@46 285 }
adamstark@46 286
adamstark@51 287 //=======================================================================
adamstark@46 288 void BTrack :: calcTempo()
adamstark@46 289 {
adamstark@46 290 // adaptive threshold on input
adamstark@46 291 adapt_thresh(df512,512);
adamstark@46 292
adamstark@46 293 // calculate auto-correlation function of detection function
adamstark@46 294 acf_bal(df512);
adamstark@46 295
adamstark@46 296 // calculate output of comb filterbank
adamstark@46 297 getrcfoutput();
adamstark@46 298
adamstark@46 299
adamstark@46 300 // adaptive threshold on rcf
adamstark@46 301 adapt_thresh(rcf,128);
adamstark@46 302
adamstark@46 303
adamstark@46 304 int t_index;
adamstark@46 305 int t_index2;
adamstark@46 306 // calculate tempo observation vector from bperiod observation vector
adamstark@46 307 for (int i = 0;i < 41;i++)
adamstark@46 308 {
adamstark@46 309 t_index = (int) round(p_fact / ((float) ((2*i)+80)));
adamstark@46 310 t_index2 = (int) round(p_fact / ((float) ((4*i)+160)));
adamstark@46 311
adamstark@46 312
adamstark@46 313 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@46 314 }
adamstark@46 315
adamstark@46 316
adamstark@46 317 float maxval;
adamstark@46 318 float maxind;
adamstark@46 319 float curval;
adamstark@46 320
adamstark@46 321 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@46 322 if (tempofix == 1)
adamstark@46 323 {
adamstark@46 324 for (int k = 0;k < 41;k++)
adamstark@46 325 {
adamstark@46 326 prev_delta[k] = prev_delta_fix[k];
adamstark@46 327 }
adamstark@46 328 }
adamstark@46 329
adamstark@46 330 for (int j=0;j < 41;j++)
adamstark@46 331 {
adamstark@46 332 maxval = -1;
adamstark@46 333 for (int i = 0;i < 41;i++)
adamstark@46 334 {
adamstark@46 335 curval = prev_delta[i]*t_tmat[i][j];
adamstark@46 336
adamstark@46 337 if (curval > maxval)
adamstark@46 338 {
adamstark@46 339 maxval = curval;
adamstark@46 340 }
adamstark@46 341 }
adamstark@46 342
adamstark@46 343 delta[j] = maxval*t_obs[j];
adamstark@46 344 }
adamstark@46 345
adamstark@46 346
adamstark@46 347 normalise(delta,41);
adamstark@46 348
adamstark@46 349 maxind = -1;
adamstark@46 350 maxval = -1;
adamstark@46 351
adamstark@46 352 for (int j=0;j < 41;j++)
adamstark@46 353 {
adamstark@46 354 if (delta[j] > maxval)
adamstark@46 355 {
adamstark@46 356 maxval = delta[j];
adamstark@46 357 maxind = j;
adamstark@46 358 }
adamstark@46 359
adamstark@46 360 prev_delta[j] = delta[j];
adamstark@46 361 }
adamstark@46 362
adamstark@46 363 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize)));
adamstark@46 364
adamstark@46 365 if (bperiod > 0)
adamstark@46 366 {
adamstark@46 367 est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod);
adamstark@46 368 }
adamstark@46 369
adamstark@46 370 //cout << bperiod << endl;
adamstark@46 371 }
adamstark@46 372
adamstark@51 373 //=======================================================================
adamstark@46 374 void BTrack :: adapt_thresh(float x[],int N)
adamstark@46 375 {
adamstark@46 376 //int N = 512; // length of df
adamstark@46 377 int i = 0;
adamstark@46 378 int k,t = 0;
adamstark@46 379 float x_thresh[N];
adamstark@46 380
adamstark@46 381 int p_post = 7;
adamstark@46 382 int p_pre = 8;
adamstark@46 383
adamstark@46 384 t = min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46 385
adamstark@46 386 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46 387 for (i = 0;i <= t;i++)
adamstark@46 388 {
adamstark@46 389 k = min((i+p_pre),N);
adamstark@46 390 x_thresh[i] = mean_array(x,1,k);
adamstark@46 391 }
adamstark@46 392 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46 393 for (i = t+1;i < N-p_post;i++)
adamstark@46 394 {
adamstark@46 395 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@46 396 }
adamstark@46 397 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46 398 for (i = N-p_post;i < N;i++)
adamstark@46 399 {
adamstark@46 400 k = max((i-p_post),1);
adamstark@46 401 x_thresh[i] = mean_array(x,k,N);
adamstark@46 402 }
adamstark@46 403
adamstark@46 404 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@46 405 for (i = 0;i < N;i++)
adamstark@46 406 {
adamstark@46 407 x[i] = x[i] - x_thresh[i];
adamstark@46 408 if (x[i] < 0)
adamstark@46 409 {
adamstark@46 410 x[i] = 0;
adamstark@46 411 }
adamstark@46 412 }
adamstark@46 413 }
adamstark@46 414
adamstark@51 415 //=======================================================================
adamstark@46 416 void BTrack :: getrcfoutput()
adamstark@46 417 {
adamstark@46 418 int numelem;
adamstark@46 419
adamstark@46 420 for (int i = 0;i < 128;i++)
adamstark@46 421 {
adamstark@46 422 rcf[i] = 0;
adamstark@46 423 }
adamstark@46 424
adamstark@46 425 numelem = 4;
adamstark@46 426
adamstark@46 427 for (int i = 2;i <= 127;i++) // max beat period
adamstark@46 428 {
adamstark@46 429 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@46 430 {
adamstark@46 431 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@46 432 {
adamstark@46 433 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46 434 }
adamstark@46 435 }
adamstark@46 436 }
adamstark@46 437 }
adamstark@46 438
adamstark@51 439 //=======================================================================
adamstark@46 440 void BTrack :: acf_bal(float df_thresh[])
adamstark@46 441 {
adamstark@46 442 int l, n = 0;
adamstark@46 443 float sum, tmp;
adamstark@46 444
adamstark@46 445 // for l lags from 0-511
adamstark@46 446 for (l = 0;l < 512;l++)
adamstark@46 447 {
adamstark@46 448 sum = 0;
adamstark@46 449
adamstark@46 450 // for n samples from 0 - (512-lag)
adamstark@46 451 for (n = 0;n < (512-l);n++)
adamstark@46 452 {
adamstark@46 453 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@46 454 sum = sum + tmp; // add to sum
adamstark@46 455 }
adamstark@46 456
adamstark@46 457 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@46 458 }
adamstark@46 459 }
adamstark@46 460
adamstark@51 461 //=======================================================================
adamstark@46 462 float BTrack :: mean_array(float array[],int start,int end)
adamstark@46 463 {
adamstark@46 464 int i;
adamstark@47 465 double sum = 0;
adamstark@47 466
adamstark@47 467 int length = end - start;
adamstark@46 468
adamstark@46 469 // find sum
adamstark@47 470 for (i = start;i < end;i++)
adamstark@46 471 {
adamstark@46 472 sum = sum + array[i];
adamstark@46 473 }
adamstark@46 474
adamstark@47 475 if (length > 0)
adamstark@47 476 {
adamstark@47 477 return sum / length; // average and return
adamstark@47 478 }
adamstark@47 479 else
adamstark@47 480 {
adamstark@47 481 return 0;
adamstark@47 482 }
adamstark@46 483 }
adamstark@46 484
adamstark@51 485 //=======================================================================
adamstark@46 486 void BTrack :: normalise(float array[],int N)
adamstark@46 487 {
adamstark@46 488 double sum = 0;
adamstark@46 489
adamstark@46 490 for (int i = 0;i < N;i++)
adamstark@46 491 {
adamstark@46 492 if (array[i] > 0)
adamstark@46 493 {
adamstark@46 494 sum = sum + array[i];
adamstark@46 495 }
adamstark@46 496 }
adamstark@46 497
adamstark@46 498 if (sum > 0)
adamstark@46 499 {
adamstark@46 500 for (int i = 0;i < N;i++)
adamstark@46 501 {
adamstark@46 502 array[i] = array[i] / sum;
adamstark@46 503 }
adamstark@46 504 }
adamstark@46 505 }
adamstark@46 506
adamstark@51 507 //=======================================================================
adamstark@46 508 void BTrack :: updatecumscore(float df_sample)
adamstark@46 509 {
adamstark@46 510 int start, end, winsize;
adamstark@46 511 float max;
adamstark@46 512
adamstark@46 513 start = dfbuffer_size - round(2*bperiod);
adamstark@46 514 end = dfbuffer_size - round(bperiod/2);
adamstark@46 515 winsize = end-start+1;
adamstark@46 516
adamstark@46 517 float w1[winsize];
adamstark@46 518 float v = -2*bperiod;
adamstark@46 519 float wcumscore;
adamstark@46 520
adamstark@46 521
adamstark@46 522 // create window
adamstark@46 523 for (int i = 0;i < winsize;i++)
adamstark@46 524 {
adamstark@46 525 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@46 526 v = v+1;
adamstark@46 527 }
adamstark@46 528
adamstark@46 529 // calculate new cumulative score value
adamstark@46 530 max = 0;
adamstark@46 531 int n = 0;
adamstark@46 532 for (int i=start;i <= end;i++)
adamstark@46 533 {
adamstark@46 534 wcumscore = cumscore[i]*w1[n];
adamstark@46 535
adamstark@46 536 if (wcumscore > max)
adamstark@46 537 {
adamstark@46 538 max = wcumscore;
adamstark@46 539 }
adamstark@46 540 n++;
adamstark@46 541 }
adamstark@46 542
adamstark@46 543
adamstark@46 544 // shift cumulative score back one
adamstark@46 545 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@46 546 {
adamstark@46 547 cumscore[i] = cumscore[i+1];
adamstark@46 548 }
adamstark@46 549
adamstark@46 550 // add new value to cumulative score
adamstark@46 551 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@46 552
adamstark@46 553 cscoreval = cumscore[dfbuffer_size-1];
adamstark@46 554
adamstark@46 555 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@46 556
adamstark@46 557 }
adamstark@46 558
adamstark@51 559 //=======================================================================
adamstark@46 560 void BTrack :: predictbeat()
adamstark@46 561 {
adamstark@46 562 int winsize = (int) bperiod;
adamstark@46 563 float fcumscore[dfbuffer_size + winsize];
adamstark@46 564 float w2[winsize];
adamstark@46 565 // copy cumscore to first part of fcumscore
adamstark@46 566 for (int i = 0;i < dfbuffer_size;i++)
adamstark@46 567 {
adamstark@46 568 fcumscore[i] = cumscore[i];
adamstark@46 569 }
adamstark@46 570
adamstark@46 571 // create future window
adamstark@46 572 float v = 1;
adamstark@46 573 for (int i = 0;i < winsize;i++)
adamstark@46 574 {
adamstark@46 575 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@46 576 v++;
adamstark@46 577 }
adamstark@46 578
adamstark@46 579 // create past window
adamstark@46 580 v = -2*bperiod;
adamstark@46 581 int start = dfbuffer_size - round(2*bperiod);
adamstark@46 582 int end = dfbuffer_size - round(bperiod/2);
adamstark@46 583 int pastwinsize = end-start+1;
adamstark@46 584 float w1[pastwinsize];
adamstark@46 585
adamstark@46 586 for (int i = 0;i < pastwinsize;i++)
adamstark@46 587 {
adamstark@46 588 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@46 589 v = v+1;
adamstark@46 590 }
adamstark@46 591
adamstark@46 592
adamstark@46 593
adamstark@46 594 // calculate future cumulative score
adamstark@46 595 float max;
adamstark@46 596 int n;
adamstark@46 597 float wcumscore;
adamstark@46 598 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46 599 {
adamstark@46 600 start = i - round(2*bperiod);
adamstark@46 601 end = i - round(bperiod/2);
adamstark@46 602
adamstark@46 603 max = 0;
adamstark@46 604 n = 0;
adamstark@46 605 for (int k=start;k <= end;k++)
adamstark@46 606 {
adamstark@46 607 wcumscore = fcumscore[k]*w1[n];
adamstark@46 608
adamstark@46 609 if (wcumscore > max)
adamstark@46 610 {
adamstark@46 611 max = wcumscore;
adamstark@46 612 }
adamstark@46 613 n++;
adamstark@46 614 }
adamstark@46 615
adamstark@46 616 fcumscore[i] = max;
adamstark@46 617 }
adamstark@46 618
adamstark@46 619
adamstark@46 620 // predict beat
adamstark@46 621 max = 0;
adamstark@46 622 n = 0;
adamstark@46 623
adamstark@46 624 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46 625 {
adamstark@46 626 wcumscore = fcumscore[i]*w2[n];
adamstark@46 627
adamstark@46 628 if (wcumscore > max)
adamstark@46 629 {
adamstark@46 630 max = wcumscore;
adamstark@46 631 beat = n;
adamstark@46 632 }
adamstark@46 633
adamstark@46 634 n++;
adamstark@46 635 }
adamstark@46 636
adamstark@46 637
adamstark@46 638 // set beat
adamstark@51 639 //beat = beat;
adamstark@46 640
adamstark@46 641 // set next prediction time
adamstark@46 642 m0 = beat+round(bperiod/2);
adamstark@46 643
adamstark@46 644
adamstark@46 645 }