annotate src/BTrack.cpp @ 46:af7739411685

Added all source code
author Adam Stark <adamstark@users.noreply.github.com>
date Tue, 21 Jan 2014 00:10:11 +0000
parents
children 46971d477183
rev   line source
adamstark@46 1 //=======================================================================
adamstark@46 2 /** @file BTrack.cpp
adamstark@46 3 * @brief Implementation file for the BTrack beat tracker
adamstark@46 4 * @author Adam Stark
adamstark@46 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46 6 *
adamstark@46 7 * This program is free software: you can redistribute it and/or modify
adamstark@46 8 * it under the terms of the GNU General Public License as published by
adamstark@46 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@46 10 * (at your option) any later version.
adamstark@46 11 *
adamstark@46 12 * This program is distributed in the hope that it will be useful,
adamstark@46 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46 15 * GNU General Public License for more details.
adamstark@46 16 *
adamstark@46 17 * You should have received a copy of the GNU General Public License
adamstark@46 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@46 19 */
adamstark@46 20 //=======================================================================
adamstark@46 21
adamstark@46 22 #include <iostream>
adamstark@46 23 #include <cmath>
adamstark@46 24 #include "BTrack.h"
adamstark@46 25 #include "samplerate.h"
adamstark@46 26 using namespace std;
adamstark@46 27
adamstark@46 28
adamstark@46 29
adamstark@46 30
adamstark@46 31 //-------------------------------------------------------------------------------
adamstark@46 32 // Constructor
adamstark@46 33 BTrack :: BTrack()
adamstark@46 34 {
adamstark@46 35 float rayparam = 43;
adamstark@46 36 float pi = 3.14159265;
adamstark@46 37
adamstark@46 38
adamstark@46 39 // initialise parameters
adamstark@46 40 tightness = 5;
adamstark@46 41 alpha = 0.9;
adamstark@46 42 tempo = 120;
adamstark@46 43 est_tempo = 120;
adamstark@46 44 p_fact = 60.*44100./512.;
adamstark@46 45
adamstark@46 46 m0 = 10;
adamstark@46 47 beat = -1;
adamstark@46 48
adamstark@46 49 playbeat = 0;
adamstark@46 50
adamstark@46 51
adamstark@46 52
adamstark@46 53
adamstark@46 54 // create rayleigh weighting vector
adamstark@46 55 for (int n = 0;n < 128;n++)
adamstark@46 56 {
adamstark@46 57 wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2)));
adamstark@46 58 }
adamstark@46 59
adamstark@46 60 // initialise prev_delta
adamstark@46 61 for (int i = 0;i < 41;i++)
adamstark@46 62 {
adamstark@46 63 prev_delta[i] = 1;
adamstark@46 64 }
adamstark@46 65
adamstark@46 66 float t_mu = 41/2;
adamstark@46 67 float m_sig;
adamstark@46 68 float x;
adamstark@46 69 // create tempo transition matrix
adamstark@46 70 m_sig = 41/8;
adamstark@46 71 for (int i = 0;i < 41;i++)
adamstark@46 72 {
adamstark@46 73 for (int j = 0;j < 41;j++)
adamstark@46 74 {
adamstark@46 75 x = j+1;
adamstark@46 76 t_mu = i+1;
adamstark@46 77 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46 78 }
adamstark@46 79 }
adamstark@46 80
adamstark@46 81 // tempo is not fixed
adamstark@46 82 tempofix = 0;
adamstark@46 83 }
adamstark@46 84
adamstark@46 85 //-------------------------------------------------------------------------------
adamstark@46 86 // Destructor
adamstark@46 87 BTrack :: ~BTrack()
adamstark@46 88 {
adamstark@46 89
adamstark@46 90 }
adamstark@46 91
adamstark@46 92 //-------------------------------------------------------------------------------
adamstark@46 93 // Initialise with frame size and set all frame sizes accordingly
adamstark@46 94 void BTrack :: initialise(int fsize)
adamstark@46 95 {
adamstark@46 96 framesize = fsize;
adamstark@46 97 dfbuffer_size = (512*512)/fsize; // calculate df buffer size
adamstark@46 98
adamstark@46 99 bperiod = round(60/((((float) fsize)/44100)*tempo));
adamstark@46 100
adamstark@46 101 dfbuffer = new float[dfbuffer_size]; // create df_buffer
adamstark@46 102 cumscore = new float[dfbuffer_size]; // create cumscore
adamstark@46 103
adamstark@46 104
adamstark@46 105 // initialise df_buffer to zeros
adamstark@46 106 for (int i = 0;i < dfbuffer_size;i++)
adamstark@46 107 {
adamstark@46 108 dfbuffer[i] = 0;
adamstark@46 109 cumscore[i] = 0;
adamstark@46 110
adamstark@46 111
adamstark@46 112 if ((i % ((int) round(bperiod))) == 0)
adamstark@46 113 {
adamstark@46 114 dfbuffer[i] = 1;
adamstark@46 115 }
adamstark@46 116 }
adamstark@46 117 }
adamstark@46 118
adamstark@46 119 //-------------------------------------------------------------------------------
adamstark@46 120 // Add new sample to buffer and apply beat tracking
adamstark@46 121 void BTrack :: process(float df_sample)
adamstark@46 122 {
adamstark@46 123 m0--;
adamstark@46 124 beat--;
adamstark@46 125 playbeat = 0;
adamstark@46 126
adamstark@46 127 // move all samples back one step
adamstark@46 128 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@46 129 {
adamstark@46 130 dfbuffer[i] = dfbuffer[i+1];
adamstark@46 131 }
adamstark@46 132
adamstark@46 133 // add new sample at the end
adamstark@46 134 dfbuffer[dfbuffer_size-1] = df_sample;
adamstark@46 135
adamstark@46 136 // update cumulative score
adamstark@46 137 updatecumscore(df_sample);
adamstark@46 138
adamstark@46 139 // if we are halfway between beats
adamstark@46 140 if (m0 == 0)
adamstark@46 141 {
adamstark@46 142 predictbeat();
adamstark@46 143 }
adamstark@46 144
adamstark@46 145 // if we are at a beat
adamstark@46 146 if (beat == 0)
adamstark@46 147 {
adamstark@46 148 playbeat = 1; // indicate a beat should be output
adamstark@46 149
adamstark@46 150 // recalculate the tempo
adamstark@46 151 dfconvert();
adamstark@46 152 calcTempo();
adamstark@46 153 }
adamstark@46 154 }
adamstark@46 155
adamstark@46 156 //-------------------------------------------------------------------------------
adamstark@46 157 // Set the tempo of the beat tracker
adamstark@46 158 void BTrack :: settempo(float tempo)
adamstark@46 159 {
adamstark@46 160
adamstark@46 161 /////////// TEMPO INDICATION RESET //////////////////
adamstark@46 162
adamstark@46 163 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 164 while (tempo > 160)
adamstark@46 165 {
adamstark@46 166 tempo = tempo/2;
adamstark@46 167 }
adamstark@46 168
adamstark@46 169 while (tempo < 80)
adamstark@46 170 {
adamstark@46 171 tempo = tempo * 2;
adamstark@46 172 }
adamstark@46 173
adamstark@46 174 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 175 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 176
adamstark@46 177 // now set previous tempo observations to zero
adamstark@46 178 for (int i=0;i < 41;i++)
adamstark@46 179 {
adamstark@46 180 prev_delta[i] = 0;
adamstark@46 181 }
adamstark@46 182
adamstark@46 183 // set desired tempo index to 1
adamstark@46 184 prev_delta[tempo_index] = 1;
adamstark@46 185
adamstark@46 186
adamstark@46 187 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46 188
adamstark@46 189 // calculate new beat period
adamstark@46 190 int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo));
adamstark@46 191
adamstark@46 192 int bcounter = 1;
adamstark@46 193 // initialise df_buffer to zeros
adamstark@46 194 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@46 195 {
adamstark@46 196 if (bcounter == 1)
adamstark@46 197 {
adamstark@46 198 cumscore[i] = 150;
adamstark@46 199 dfbuffer[i] = 150;
adamstark@46 200 }
adamstark@46 201 else
adamstark@46 202 {
adamstark@46 203 cumscore[i] = 10;
adamstark@46 204 dfbuffer[i] = 10;
adamstark@46 205 }
adamstark@46 206
adamstark@46 207 bcounter++;
adamstark@46 208
adamstark@46 209 if (bcounter > new_bperiod)
adamstark@46 210 {
adamstark@46 211 bcounter = 1;
adamstark@46 212 }
adamstark@46 213 }
adamstark@46 214
adamstark@46 215 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46 216
adamstark@46 217 // beat is now
adamstark@46 218 beat = 0;
adamstark@46 219
adamstark@46 220 // offbeat is half of new beat period away
adamstark@46 221 m0 = (int) round(((float) new_bperiod)/2);
adamstark@46 222 }
adamstark@46 223
adamstark@46 224
adamstark@46 225 //-------------------------------------------------------------------------------
adamstark@46 226 // fix tempo to roughly around some value
adamstark@46 227 void BTrack :: fixtempo(float tempo)
adamstark@46 228 {
adamstark@46 229 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 230 while (tempo > 160)
adamstark@46 231 {
adamstark@46 232 tempo = tempo/2;
adamstark@46 233 }
adamstark@46 234
adamstark@46 235 while (tempo < 80)
adamstark@46 236 {
adamstark@46 237 tempo = tempo * 2;
adamstark@46 238 }
adamstark@46 239
adamstark@46 240 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 241 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 242
adamstark@46 243 // now set previous fixed previous tempo observation values to zero
adamstark@46 244 for (int i=0;i < 41;i++)
adamstark@46 245 {
adamstark@46 246 prev_delta_fix[i] = 0;
adamstark@46 247 }
adamstark@46 248
adamstark@46 249 // set desired tempo index to 1
adamstark@46 250 prev_delta_fix[tempo_index] = 1;
adamstark@46 251
adamstark@46 252 // set the tempo fix flag
adamstark@46 253 tempofix = 1;
adamstark@46 254 }
adamstark@46 255
adamstark@46 256 //-------------------------------------------------------------------------------
adamstark@46 257 // do not fix the tempo anymore
adamstark@46 258 void BTrack :: unfixtempo()
adamstark@46 259 {
adamstark@46 260 // set the tempo fix flag
adamstark@46 261 tempofix = 0;
adamstark@46 262 }
adamstark@46 263
adamstark@46 264 //-------------------------------------------------------------------------------
adamstark@46 265 // Convert detection function from N samples to 512
adamstark@46 266 void BTrack :: dfconvert()
adamstark@46 267 {
adamstark@46 268 float output[512];
adamstark@46 269
adamstark@46 270 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@46 271 int BUFFER_LEN = dfbuffer_size;
adamstark@46 272 int output_len;
adamstark@46 273 SRC_DATA src_data ;
adamstark@46 274
adamstark@46 275 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@46 276 output_len = 512;
adamstark@46 277
adamstark@46 278 src_data.data_in = dfbuffer;
adamstark@46 279 src_data.input_frames = BUFFER_LEN;
adamstark@46 280
adamstark@46 281 src_data.src_ratio = src_ratio;
adamstark@46 282
adamstark@46 283 src_data.data_out = output;
adamstark@46 284 src_data.output_frames = output_len;
adamstark@46 285
adamstark@46 286 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@46 287
adamstark@46 288 for (int i = 0;i < output_len;i++)
adamstark@46 289 {
adamstark@46 290 df512[i] = src_data.data_out[i];
adamstark@46 291 }
adamstark@46 292 }
adamstark@46 293
adamstark@46 294 //-------------------------------------------------------------------------------
adamstark@46 295 // To calculate the current tempo expressed as the beat period in detection function samples
adamstark@46 296 void BTrack :: calcTempo()
adamstark@46 297 {
adamstark@46 298 // adaptive threshold on input
adamstark@46 299 adapt_thresh(df512,512);
adamstark@46 300
adamstark@46 301 // calculate auto-correlation function of detection function
adamstark@46 302 acf_bal(df512);
adamstark@46 303
adamstark@46 304 // calculate output of comb filterbank
adamstark@46 305 getrcfoutput();
adamstark@46 306
adamstark@46 307
adamstark@46 308 // adaptive threshold on rcf
adamstark@46 309 adapt_thresh(rcf,128);
adamstark@46 310
adamstark@46 311
adamstark@46 312 int t_index;
adamstark@46 313 int t_index2;
adamstark@46 314 // calculate tempo observation vector from bperiod observation vector
adamstark@46 315 for (int i = 0;i < 41;i++)
adamstark@46 316 {
adamstark@46 317 t_index = (int) round(p_fact / ((float) ((2*i)+80)));
adamstark@46 318 t_index2 = (int) round(p_fact / ((float) ((4*i)+160)));
adamstark@46 319
adamstark@46 320
adamstark@46 321 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@46 322 }
adamstark@46 323
adamstark@46 324
adamstark@46 325 float maxval;
adamstark@46 326 float maxind;
adamstark@46 327 float curval;
adamstark@46 328
adamstark@46 329 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@46 330 if (tempofix == 1)
adamstark@46 331 {
adamstark@46 332 for (int k = 0;k < 41;k++)
adamstark@46 333 {
adamstark@46 334 prev_delta[k] = prev_delta_fix[k];
adamstark@46 335 }
adamstark@46 336 }
adamstark@46 337
adamstark@46 338 for (int j=0;j < 41;j++)
adamstark@46 339 {
adamstark@46 340 maxval = -1;
adamstark@46 341 for (int i = 0;i < 41;i++)
adamstark@46 342 {
adamstark@46 343 curval = prev_delta[i]*t_tmat[i][j];
adamstark@46 344
adamstark@46 345 if (curval > maxval)
adamstark@46 346 {
adamstark@46 347 maxval = curval;
adamstark@46 348 }
adamstark@46 349 }
adamstark@46 350
adamstark@46 351 delta[j] = maxval*t_obs[j];
adamstark@46 352 }
adamstark@46 353
adamstark@46 354
adamstark@46 355 normalise(delta,41);
adamstark@46 356
adamstark@46 357 maxind = -1;
adamstark@46 358 maxval = -1;
adamstark@46 359
adamstark@46 360 for (int j=0;j < 41;j++)
adamstark@46 361 {
adamstark@46 362 if (delta[j] > maxval)
adamstark@46 363 {
adamstark@46 364 maxval = delta[j];
adamstark@46 365 maxind = j;
adamstark@46 366 }
adamstark@46 367
adamstark@46 368 prev_delta[j] = delta[j];
adamstark@46 369 }
adamstark@46 370
adamstark@46 371 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize)));
adamstark@46 372
adamstark@46 373 if (bperiod > 0)
adamstark@46 374 {
adamstark@46 375 est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod);
adamstark@46 376 }
adamstark@46 377
adamstark@46 378 //cout << bperiod << endl;
adamstark@46 379 }
adamstark@46 380
adamstark@46 381 //-------------------------------------------------------------------------------
adamstark@46 382 // calculates an adaptive threshold which is used to remove low level energy from detection function and emphasise peaks
adamstark@46 383 void BTrack :: adapt_thresh(float x[],int N)
adamstark@46 384 {
adamstark@46 385 //int N = 512; // length of df
adamstark@46 386 int i = 0;
adamstark@46 387 int k,t = 0;
adamstark@46 388 float x_thresh[N];
adamstark@46 389
adamstark@46 390 int p_post = 7;
adamstark@46 391 int p_pre = 8;
adamstark@46 392
adamstark@46 393 t = min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46 394
adamstark@46 395 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46 396 for (i = 0;i <= t;i++)
adamstark@46 397 {
adamstark@46 398 k = min((i+p_pre),N);
adamstark@46 399 x_thresh[i] = mean_array(x,1,k);
adamstark@46 400 }
adamstark@46 401 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46 402 for (i = t+1;i < N-p_post;i++)
adamstark@46 403 {
adamstark@46 404 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@46 405 }
adamstark@46 406 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46 407 for (i = N-p_post;i < N;i++)
adamstark@46 408 {
adamstark@46 409 k = max((i-p_post),1);
adamstark@46 410 x_thresh[i] = mean_array(x,k,N);
adamstark@46 411 }
adamstark@46 412
adamstark@46 413 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@46 414 for (i = 0;i < N;i++)
adamstark@46 415 {
adamstark@46 416 x[i] = x[i] - x_thresh[i];
adamstark@46 417 if (x[i] < 0)
adamstark@46 418 {
adamstark@46 419 x[i] = 0;
adamstark@46 420 }
adamstark@46 421 }
adamstark@46 422 }
adamstark@46 423
adamstark@46 424 //-------------------------------------------------------------------------------
adamstark@46 425 // returns the output of the comb filter
adamstark@46 426 void BTrack :: getrcfoutput()
adamstark@46 427 {
adamstark@46 428 int numelem;
adamstark@46 429
adamstark@46 430 for (int i = 0;i < 128;i++)
adamstark@46 431 {
adamstark@46 432 rcf[i] = 0;
adamstark@46 433 }
adamstark@46 434
adamstark@46 435 numelem = 4;
adamstark@46 436
adamstark@46 437 for (int i = 2;i <= 127;i++) // max beat period
adamstark@46 438 {
adamstark@46 439 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@46 440 {
adamstark@46 441 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@46 442 {
adamstark@46 443 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46 444 }
adamstark@46 445 }
adamstark@46 446 }
adamstark@46 447 }
adamstark@46 448
adamstark@46 449 //-------------------------------------------------------------------------------
adamstark@46 450 // calculates the balanced autocorrelation of the smoothed detection function
adamstark@46 451 void BTrack :: acf_bal(float df_thresh[])
adamstark@46 452 {
adamstark@46 453 int l, n = 0;
adamstark@46 454 float sum, tmp;
adamstark@46 455
adamstark@46 456 // for l lags from 0-511
adamstark@46 457 for (l = 0;l < 512;l++)
adamstark@46 458 {
adamstark@46 459 sum = 0;
adamstark@46 460
adamstark@46 461 // for n samples from 0 - (512-lag)
adamstark@46 462 for (n = 0;n < (512-l);n++)
adamstark@46 463 {
adamstark@46 464 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@46 465 sum = sum + tmp; // add to sum
adamstark@46 466 }
adamstark@46 467
adamstark@46 468 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@46 469 }
adamstark@46 470 }
adamstark@46 471
adamstark@46 472
adamstark@46 473 //-------------------------------------------------------------------------------
adamstark@46 474 // calculates the mean of values in an array from index locations [start,end]
adamstark@46 475 float BTrack :: mean_array(float array[],int start,int end)
adamstark@46 476 {
adamstark@46 477 int i;
adamstark@46 478 float sum = 0;
adamstark@46 479 int length = end - start + 1;
adamstark@46 480
adamstark@46 481 // find sum
adamstark@46 482 for (i = start;i < end+1;i++)
adamstark@46 483 {
adamstark@46 484 sum = sum + array[i];
adamstark@46 485 }
adamstark@46 486
adamstark@46 487 return sum / length; // average and return
adamstark@46 488 }
adamstark@46 489
adamstark@46 490 //-------------------------------------------------------------------------------
adamstark@46 491 // normalise the array
adamstark@46 492 void BTrack :: normalise(float array[],int N)
adamstark@46 493 {
adamstark@46 494 double sum = 0;
adamstark@46 495
adamstark@46 496 for (int i = 0;i < N;i++)
adamstark@46 497 {
adamstark@46 498 if (array[i] > 0)
adamstark@46 499 {
adamstark@46 500 sum = sum + array[i];
adamstark@46 501 }
adamstark@46 502 }
adamstark@46 503
adamstark@46 504 if (sum > 0)
adamstark@46 505 {
adamstark@46 506 for (int i = 0;i < N;i++)
adamstark@46 507 {
adamstark@46 508 array[i] = array[i] / sum;
adamstark@46 509 }
adamstark@46 510 }
adamstark@46 511 }
adamstark@46 512
adamstark@46 513 //-------------------------------------------------------------------------------
adamstark@46 514 // plot contents of detection function buffer
adamstark@46 515 void BTrack :: plotdfbuffer()
adamstark@46 516 {
adamstark@46 517 for (int i=0;i < dfbuffer_size;i++)
adamstark@46 518 {
adamstark@46 519 cout << dfbuffer[i] << endl;
adamstark@46 520 }
adamstark@46 521
adamstark@46 522 cout << "--------------------------------" << endl;
adamstark@46 523 }
adamstark@46 524
adamstark@46 525 //-------------------------------------------------------------------------------
adamstark@46 526 // update the cumulative score
adamstark@46 527 void BTrack :: updatecumscore(float df_sample)
adamstark@46 528 {
adamstark@46 529 int start, end, winsize;
adamstark@46 530 float max;
adamstark@46 531
adamstark@46 532 start = dfbuffer_size - round(2*bperiod);
adamstark@46 533 end = dfbuffer_size - round(bperiod/2);
adamstark@46 534 winsize = end-start+1;
adamstark@46 535
adamstark@46 536 float w1[winsize];
adamstark@46 537 float v = -2*bperiod;
adamstark@46 538 float wcumscore;
adamstark@46 539
adamstark@46 540
adamstark@46 541 // create window
adamstark@46 542 for (int i = 0;i < winsize;i++)
adamstark@46 543 {
adamstark@46 544 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@46 545 v = v+1;
adamstark@46 546 }
adamstark@46 547
adamstark@46 548 // calculate new cumulative score value
adamstark@46 549 max = 0;
adamstark@46 550 int n = 0;
adamstark@46 551 for (int i=start;i <= end;i++)
adamstark@46 552 {
adamstark@46 553 wcumscore = cumscore[i]*w1[n];
adamstark@46 554
adamstark@46 555 if (wcumscore > max)
adamstark@46 556 {
adamstark@46 557 max = wcumscore;
adamstark@46 558 }
adamstark@46 559 n++;
adamstark@46 560 }
adamstark@46 561
adamstark@46 562
adamstark@46 563 // shift cumulative score back one
adamstark@46 564 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@46 565 {
adamstark@46 566 cumscore[i] = cumscore[i+1];
adamstark@46 567 }
adamstark@46 568
adamstark@46 569 // add new value to cumulative score
adamstark@46 570 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@46 571
adamstark@46 572 cscoreval = cumscore[dfbuffer_size-1];
adamstark@46 573
adamstark@46 574 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@46 575
adamstark@46 576 }
adamstark@46 577
adamstark@46 578 //-------------------------------------------------------------------------------
adamstark@46 579 // plot contents of detection function buffer
adamstark@46 580 void BTrack :: predictbeat()
adamstark@46 581 {
adamstark@46 582 int winsize = (int) bperiod;
adamstark@46 583 float fcumscore[dfbuffer_size + winsize];
adamstark@46 584 float w2[winsize];
adamstark@46 585 // copy cumscore to first part of fcumscore
adamstark@46 586 for (int i = 0;i < dfbuffer_size;i++)
adamstark@46 587 {
adamstark@46 588 fcumscore[i] = cumscore[i];
adamstark@46 589 }
adamstark@46 590
adamstark@46 591 // create future window
adamstark@46 592 float v = 1;
adamstark@46 593 for (int i = 0;i < winsize;i++)
adamstark@46 594 {
adamstark@46 595 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@46 596 v++;
adamstark@46 597 }
adamstark@46 598
adamstark@46 599 // create past window
adamstark@46 600 v = -2*bperiod;
adamstark@46 601 int start = dfbuffer_size - round(2*bperiod);
adamstark@46 602 int end = dfbuffer_size - round(bperiod/2);
adamstark@46 603 int pastwinsize = end-start+1;
adamstark@46 604 float w1[pastwinsize];
adamstark@46 605
adamstark@46 606 for (int i = 0;i < pastwinsize;i++)
adamstark@46 607 {
adamstark@46 608 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@46 609 v = v+1;
adamstark@46 610 }
adamstark@46 611
adamstark@46 612
adamstark@46 613
adamstark@46 614 // calculate future cumulative score
adamstark@46 615 float max;
adamstark@46 616 int n;
adamstark@46 617 float wcumscore;
adamstark@46 618 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46 619 {
adamstark@46 620 start = i - round(2*bperiod);
adamstark@46 621 end = i - round(bperiod/2);
adamstark@46 622
adamstark@46 623 max = 0;
adamstark@46 624 n = 0;
adamstark@46 625 for (int k=start;k <= end;k++)
adamstark@46 626 {
adamstark@46 627 wcumscore = fcumscore[k]*w1[n];
adamstark@46 628
adamstark@46 629 if (wcumscore > max)
adamstark@46 630 {
adamstark@46 631 max = wcumscore;
adamstark@46 632 }
adamstark@46 633 n++;
adamstark@46 634 }
adamstark@46 635
adamstark@46 636 fcumscore[i] = max;
adamstark@46 637 }
adamstark@46 638
adamstark@46 639
adamstark@46 640 // predict beat
adamstark@46 641 max = 0;
adamstark@46 642 n = 0;
adamstark@46 643
adamstark@46 644 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46 645 {
adamstark@46 646 wcumscore = fcumscore[i]*w2[n];
adamstark@46 647
adamstark@46 648 if (wcumscore > max)
adamstark@46 649 {
adamstark@46 650 max = wcumscore;
adamstark@46 651 beat = n;
adamstark@46 652 }
adamstark@46 653
adamstark@46 654 n++;
adamstark@46 655 }
adamstark@46 656
adamstark@46 657
adamstark@46 658 // set beat
adamstark@46 659 beat = beat;
adamstark@46 660
adamstark@46 661 // set next prediction time
adamstark@46 662 m0 = beat+round(bperiod/2);
adamstark@46 663
adamstark@46 664
adamstark@46 665 }