annotate src/BTrack.cpp @ 88:995ddf0eadd4

Implemented frequency domain calculation of the auto-correlation function, rather than old the time domain method. Makes for a very small (max 5%) speed up overall for the algorithm
author Adam Stark <adamstark.uk@gmail.com>
date Sat, 30 Jan 2016 23:55:13 +0000
parents 866024f9f95a
children 5ef334c782f3
rev   line source
adamstark@46 1 //=======================================================================
adamstark@46 2 /** @file BTrack.cpp
adamstark@47 3 * @brief BTrack - a real-time beat tracker
adamstark@46 4 * @author Adam Stark
adamstark@46 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46 6 *
adamstark@46 7 * This program is free software: you can redistribute it and/or modify
adamstark@46 8 * it under the terms of the GNU General Public License as published by
adamstark@46 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@46 10 * (at your option) any later version.
adamstark@46 11 *
adamstark@46 12 * This program is distributed in the hope that it will be useful,
adamstark@46 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46 15 * GNU General Public License for more details.
adamstark@46 16 *
adamstark@46 17 * You should have received a copy of the GNU General Public License
adamstark@46 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@46 19 */
adamstark@46 20 //=======================================================================
adamstark@46 21
adamstark@46 22 #include <cmath>
adamstark@52 23 #include <algorithm>
adamstark@46 24 #include "BTrack.h"
adamstark@46 25 #include "samplerate.h"
adamstark@46 26
adamstark@55 27 //=======================================================================
adamstark@57 28 BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@55 29 {
adamstark@55 30 initialise(512, 1024);
adamstark@55 31 }
adamstark@46 32
adamstark@51 33 //=======================================================================
adamstark@57 34 BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@46 35 {
adamstark@57 36 initialise(hopSize_, 2*hopSize_);
adamstark@55 37 }
adamstark@55 38
adamstark@55 39 //=======================================================================
adamstark@57 40 BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@55 41 {
adamstark@57 42 initialise(hopSize_, frameSize_);
adamstark@55 43 }
adamstark@55 44
adamstark@55 45 //=======================================================================
adamstark@88 46 BTrack::~BTrack()
adamstark@88 47 {
adamstark@88 48 // destroy fft plan
adamstark@88 49 fftw_destroy_plan(acfForwardFFT);
adamstark@88 50 fftw_destroy_plan(acfBackwardFFT);
adamstark@88 51 fftw_free(complexIn);
adamstark@88 52 fftw_free(complexOut);
adamstark@88 53 }
adamstark@88 54
adamstark@88 55 //=======================================================================
adamstark@55 56 double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs)
adamstark@55 57 {
adamstark@55 58 double hop = (double) hopSize;
adamstark@55 59 double samplingFrequency = (double) fs;
adamstark@55 60 double frameNum = (double) frameNumber;
adamstark@55 61
adamstark@55 62 return ((hop / samplingFrequency) * frameNum);
adamstark@55 63 }
adamstark@55 64
adamstark@55 65 //=======================================================================
adamstark@55 66 double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs)
adamstark@55 67 {
adamstark@55 68 long frameNum = (long) frameNumber;
adamstark@55 69
adamstark@55 70 return getBeatTimeInSeconds(frameNum, hopSize, fs);
adamstark@55 71 }
adamstark@55 72
adamstark@55 73
adamstark@55 74
adamstark@55 75 //=======================================================================
adamstark@57 76 void BTrack::initialise(int hopSize_, int frameSize_)
adamstark@55 77 {
adamstark@55 78 double rayparam = 43;
adamstark@54 79 double pi = 3.14159265;
adamstark@46 80
adamstark@46 81
adamstark@46 82 // initialise parameters
adamstark@46 83 tightness = 5;
adamstark@46 84 alpha = 0.9;
adamstark@46 85 tempo = 120;
adamstark@58 86 estimatedTempo = 120.0;
adamstark@59 87 tempoToLagFactor = 60.*44100./512.;
adamstark@46 88
adamstark@46 89 m0 = 10;
adamstark@58 90 beatCounter = -1;
adamstark@46 91
adamstark@57 92 beatDueInFrame = false;
adamstark@46 93
adamstark@58 94
adamstark@46 95 // create rayleigh weighting vector
adamstark@46 96 for (int n = 0;n < 128;n++)
adamstark@46 97 {
adamstark@58 98 weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
adamstark@46 99 }
adamstark@46 100
adamstark@46 101 // initialise prev_delta
adamstark@46 102 for (int i = 0;i < 41;i++)
adamstark@46 103 {
adamstark@58 104 prevDelta[i] = 1;
adamstark@46 105 }
adamstark@46 106
adamstark@54 107 double t_mu = 41/2;
adamstark@54 108 double m_sig;
adamstark@54 109 double x;
adamstark@46 110 // create tempo transition matrix
adamstark@46 111 m_sig = 41/8;
adamstark@46 112 for (int i = 0;i < 41;i++)
adamstark@46 113 {
adamstark@46 114 for (int j = 0;j < 41;j++)
adamstark@46 115 {
adamstark@46 116 x = j+1;
adamstark@46 117 t_mu = i+1;
adamstark@58 118 tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46 119 }
adamstark@55 120 }
adamstark@46 121
adamstark@46 122 // tempo is not fixed
adamstark@58 123 tempoFixed = false;
adamstark@58 124
adamstark@58 125 // initialise latest cumulative score value
adamstark@58 126 // in case it is requested before any processing takes place
adamstark@58 127 latestCumulativeScoreValue = 0;
adamstark@55 128
adamstark@55 129 // initialise algorithm given the hopsize
adamstark@57 130 setHopSize(hopSize_);
adamstark@88 131
adamstark@88 132
adamstark@88 133 // Set up FFT for calculating the auto-correlation function
adamstark@88 134 FFTLengthForACFCalculation = 1024;
adamstark@88 135
adamstark@88 136 complexIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@88 137 complexOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@88 138
adamstark@88 139 acfForwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@88 140 acfBackwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@46 141 }
adamstark@46 142
adamstark@51 143 //=======================================================================
adamstark@57 144 void BTrack::setHopSize(int hopSize_)
adamstark@46 145 {
adamstark@57 146 hopSize = hopSize_;
adamstark@58 147 onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size
adamstark@46 148
adamstark@57 149 beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
adamstark@63 150
adamstark@63 151 // set size of onset detection function buffer
adamstark@63 152 onsetDF.resize(onsetDFBufferSize);
adamstark@63 153
adamstark@63 154 // set size of cumulative score buffer
adamstark@63 155 cumulativeScore.resize(onsetDFBufferSize);
adamstark@46 156
adamstark@46 157 // initialise df_buffer to zeros
adamstark@58 158 for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@46 159 {
adamstark@58 160 onsetDF[i] = 0;
adamstark@58 161 cumulativeScore[i] = 0;
adamstark@46 162
adamstark@46 163
adamstark@57 164 if ((i % ((int) round(beatPeriod))) == 0)
adamstark@46 165 {
adamstark@58 166 onsetDF[i] = 1;
adamstark@46 167 }
adamstark@46 168 }
adamstark@46 169 }
adamstark@46 170
adamstark@51 171 //=======================================================================
adamstark@65 172 void BTrack::updateHopAndFrameSize(int hopSize_,int frameSize_)
adamstark@65 173 {
adamstark@65 174 // update the onset detection function object
adamstark@66 175 odf.initialise(hopSize_, frameSize_);
adamstark@65 176
adamstark@65 177 // update the hop size being used by the beat tracker
adamstark@65 178 setHopSize(hopSize_);
adamstark@65 179 }
adamstark@65 180
adamstark@65 181 //=======================================================================
adamstark@57 182 bool BTrack::beatDueInCurrentFrame()
adamstark@57 183 {
adamstark@57 184 return beatDueInFrame;
adamstark@57 185 }
adamstark@57 186
adamstark@57 187 //=======================================================================
adamstark@78 188 double BTrack::getCurrentTempoEstimate()
adamstark@78 189 {
adamstark@78 190 return estimatedTempo;
adamstark@78 191 }
adamstark@78 192
adamstark@78 193 //=======================================================================
adamstark@57 194 int BTrack::getHopSize()
adamstark@57 195 {
adamstark@57 196 return hopSize;
adamstark@57 197 }
adamstark@57 198
adamstark@57 199 //=======================================================================
adamstark@58 200 double BTrack::getLatestCumulativeScoreValue()
adamstark@58 201 {
adamstark@58 202 return latestCumulativeScoreValue;
adamstark@58 203 }
adamstark@58 204
adamstark@58 205 //=======================================================================
adamstark@55 206 void BTrack::processAudioFrame(double *frame)
adamstark@55 207 {
adamstark@55 208 // calculate the onset detection function sample for the frame
adamstark@59 209 double sample = odf.calculateOnsetDetectionFunctionSample(frame);
adamstark@55 210
adamstark@56 211
adamstark@55 212
adamstark@55 213 // process the new onset detection function sample in the beat tracking algorithm
adamstark@55 214 processOnsetDetectionFunctionSample(sample);
adamstark@55 215 }
adamstark@55 216
adamstark@55 217 //=======================================================================
adamstark@55 218 void BTrack::processOnsetDetectionFunctionSample(double newSample)
adamstark@56 219 {
adamstark@56 220 // we need to ensure that the onset
adamstark@56 221 // detection function sample is positive
adamstark@56 222 newSample = fabs(newSample);
adamstark@56 223
adamstark@56 224 // add a tiny constant to the sample to stop it from ever going
adamstark@56 225 // to zero. this is to avoid problems further down the line
adamstark@56 226 newSample = newSample + 0.0001;
adamstark@56 227
adamstark@46 228 m0--;
adamstark@58 229 beatCounter--;
adamstark@57 230 beatDueInFrame = false;
adamstark@46 231
adamstark@46 232 // move all samples back one step
adamstark@58 233 for (int i=0;i < (onsetDFBufferSize-1);i++)
adamstark@46 234 {
adamstark@58 235 onsetDF[i] = onsetDF[i+1];
adamstark@46 236 }
adamstark@46 237
adamstark@46 238 // add new sample at the end
adamstark@58 239 onsetDF[onsetDFBufferSize-1] = newSample;
adamstark@46 240
adamstark@46 241 // update cumulative score
adamstark@57 242 updateCumulativeScore(newSample);
adamstark@46 243
adamstark@46 244 // if we are halfway between beats
adamstark@46 245 if (m0 == 0)
adamstark@46 246 {
adamstark@57 247 predictBeat();
adamstark@46 248 }
adamstark@46 249
adamstark@46 250 // if we are at a beat
adamstark@58 251 if (beatCounter == 0)
adamstark@46 252 {
adamstark@57 253 beatDueInFrame = true; // indicate a beat should be output
adamstark@46 254
adamstark@46 255 // recalculate the tempo
adamstark@57 256 resampleOnsetDetectionFunction();
adamstark@57 257 calculateTempo();
adamstark@46 258 }
adamstark@46 259 }
adamstark@46 260
adamstark@51 261 //=======================================================================
adamstark@57 262 void BTrack::setTempo(double tempo)
adamstark@46 263 {
adamstark@46 264
adamstark@46 265 /////////// TEMPO INDICATION RESET //////////////////
adamstark@46 266
adamstark@46 267 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 268 while (tempo > 160)
adamstark@46 269 {
adamstark@46 270 tempo = tempo/2;
adamstark@46 271 }
adamstark@46 272
adamstark@46 273 while (tempo < 80)
adamstark@46 274 {
adamstark@46 275 tempo = tempo * 2;
adamstark@46 276 }
adamstark@46 277
adamstark@46 278 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 279 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 280
adamstark@46 281 // now set previous tempo observations to zero
adamstark@46 282 for (int i=0;i < 41;i++)
adamstark@46 283 {
adamstark@58 284 prevDelta[i] = 0;
adamstark@46 285 }
adamstark@46 286
adamstark@46 287 // set desired tempo index to 1
adamstark@58 288 prevDelta[tempo_index] = 1;
adamstark@46 289
adamstark@46 290
adamstark@46 291 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46 292
adamstark@46 293 // calculate new beat period
adamstark@57 294 int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo));
adamstark@46 295
adamstark@46 296 int bcounter = 1;
adamstark@46 297 // initialise df_buffer to zeros
adamstark@58 298 for (int i = (onsetDFBufferSize-1);i >= 0;i--)
adamstark@46 299 {
adamstark@46 300 if (bcounter == 1)
adamstark@46 301 {
adamstark@58 302 cumulativeScore[i] = 150;
adamstark@58 303 onsetDF[i] = 150;
adamstark@46 304 }
adamstark@46 305 else
adamstark@46 306 {
adamstark@58 307 cumulativeScore[i] = 10;
adamstark@58 308 onsetDF[i] = 10;
adamstark@46 309 }
adamstark@46 310
adamstark@46 311 bcounter++;
adamstark@46 312
adamstark@46 313 if (bcounter > new_bperiod)
adamstark@46 314 {
adamstark@46 315 bcounter = 1;
adamstark@46 316 }
adamstark@46 317 }
adamstark@46 318
adamstark@46 319 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46 320
adamstark@46 321 // beat is now
adamstark@58 322 beatCounter = 0;
adamstark@46 323
adamstark@46 324 // offbeat is half of new beat period away
adamstark@54 325 m0 = (int) round(((double) new_bperiod)/2);
adamstark@46 326 }
adamstark@46 327
adamstark@51 328 //=======================================================================
adamstark@57 329 void BTrack::fixTempo(double tempo)
adamstark@46 330 {
adamstark@46 331 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 332 while (tempo > 160)
adamstark@46 333 {
adamstark@46 334 tempo = tempo/2;
adamstark@46 335 }
adamstark@46 336
adamstark@46 337 while (tempo < 80)
adamstark@46 338 {
adamstark@46 339 tempo = tempo * 2;
adamstark@46 340 }
adamstark@46 341
adamstark@46 342 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 343 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 344
adamstark@46 345 // now set previous fixed previous tempo observation values to zero
adamstark@46 346 for (int i=0;i < 41;i++)
adamstark@46 347 {
adamstark@58 348 prevDeltaFixed[i] = 0;
adamstark@46 349 }
adamstark@46 350
adamstark@46 351 // set desired tempo index to 1
adamstark@58 352 prevDeltaFixed[tempo_index] = 1;
adamstark@46 353
adamstark@46 354 // set the tempo fix flag
adamstark@58 355 tempoFixed = true;
adamstark@46 356 }
adamstark@46 357
adamstark@51 358 //=======================================================================
adamstark@57 359 void BTrack::doNotFixTempo()
adamstark@46 360 {
adamstark@46 361 // set the tempo fix flag
adamstark@58 362 tempoFixed = false;
adamstark@46 363 }
adamstark@46 364
adamstark@51 365 //=======================================================================
adamstark@57 366 void BTrack::resampleOnsetDetectionFunction()
adamstark@46 367 {
adamstark@46 368 float output[512];
adamstark@58 369 float input[onsetDFBufferSize];
adamstark@54 370
adamstark@58 371 for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@54 372 {
adamstark@58 373 input[i] = (float) onsetDF[i];
adamstark@54 374 }
adamstark@46 375
adamstark@58 376 double src_ratio = 512.0/((double) onsetDFBufferSize);
adamstark@58 377 int BUFFER_LEN = onsetDFBufferSize;
adamstark@46 378 int output_len;
adamstark@46 379 SRC_DATA src_data ;
adamstark@46 380
adamstark@46 381 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@46 382 output_len = 512;
adamstark@46 383
adamstark@54 384 src_data.data_in = input;
adamstark@46 385 src_data.input_frames = BUFFER_LEN;
adamstark@46 386
adamstark@46 387 src_data.src_ratio = src_ratio;
adamstark@46 388
adamstark@46 389 src_data.data_out = output;
adamstark@46 390 src_data.output_frames = output_len;
adamstark@46 391
adamstark@46 392 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@46 393
adamstark@46 394 for (int i = 0;i < output_len;i++)
adamstark@46 395 {
adamstark@58 396 resampledOnsetDF[i] = (double) src_data.data_out[i];
adamstark@46 397 }
adamstark@46 398 }
adamstark@46 399
adamstark@51 400 //=======================================================================
adamstark@57 401 void BTrack::calculateTempo()
adamstark@46 402 {
adamstark@46 403 // adaptive threshold on input
adamstark@58 404 adaptiveThreshold(resampledOnsetDF,512);
adamstark@46 405
adamstark@46 406 // calculate auto-correlation function of detection function
adamstark@58 407 calculateBalancedACF(resampledOnsetDF);
adamstark@46 408
adamstark@46 409 // calculate output of comb filterbank
adamstark@57 410 calculateOutputOfCombFilterBank();
adamstark@46 411
adamstark@46 412
adamstark@46 413 // adaptive threshold on rcf
adamstark@58 414 adaptiveThreshold(combFilterBankOutput,128);
adamstark@46 415
adamstark@46 416
adamstark@46 417 int t_index;
adamstark@46 418 int t_index2;
adamstark@59 419 // calculate tempo observation vector from beat period observation vector
adamstark@46 420 for (int i = 0;i < 41;i++)
adamstark@46 421 {
adamstark@59 422 t_index = (int) round(tempoToLagFactor / ((double) ((2*i)+80)));
adamstark@59 423 t_index2 = (int) round(tempoToLagFactor / ((double) ((4*i)+160)));
adamstark@46 424
adamstark@46 425
adamstark@58 426 tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1];
adamstark@46 427 }
adamstark@46 428
adamstark@46 429
adamstark@54 430 double maxval;
adamstark@54 431 double maxind;
adamstark@54 432 double curval;
adamstark@46 433
adamstark@46 434 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@58 435 if (tempoFixed)
adamstark@46 436 {
adamstark@46 437 for (int k = 0;k < 41;k++)
adamstark@46 438 {
adamstark@58 439 prevDelta[k] = prevDeltaFixed[k];
adamstark@46 440 }
adamstark@46 441 }
adamstark@46 442
adamstark@46 443 for (int j=0;j < 41;j++)
adamstark@46 444 {
adamstark@46 445 maxval = -1;
adamstark@46 446 for (int i = 0;i < 41;i++)
adamstark@46 447 {
adamstark@58 448 curval = prevDelta[i]*tempoTransitionMatrix[i][j];
adamstark@46 449
adamstark@46 450 if (curval > maxval)
adamstark@46 451 {
adamstark@46 452 maxval = curval;
adamstark@46 453 }
adamstark@46 454 }
adamstark@46 455
adamstark@58 456 delta[j] = maxval*tempoObservationVector[j];
adamstark@46 457 }
adamstark@46 458
adamstark@46 459
adamstark@57 460 normaliseArray(delta,41);
adamstark@46 461
adamstark@46 462 maxind = -1;
adamstark@46 463 maxval = -1;
adamstark@46 464
adamstark@46 465 for (int j=0;j < 41;j++)
adamstark@46 466 {
adamstark@46 467 if (delta[j] > maxval)
adamstark@46 468 {
adamstark@46 469 maxval = delta[j];
adamstark@46 470 maxind = j;
adamstark@46 471 }
adamstark@46 472
adamstark@58 473 prevDelta[j] = delta[j];
adamstark@46 474 }
adamstark@46 475
adamstark@57 476 beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize)));
adamstark@46 477
adamstark@57 478 if (beatPeriod > 0)
adamstark@46 479 {
adamstark@58 480 estimatedTempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod);
adamstark@46 481 }
adamstark@46 482 }
adamstark@46 483
adamstark@51 484 //=======================================================================
adamstark@57 485 void BTrack::adaptiveThreshold(double *x,int N)
adamstark@46 486 {
adamstark@46 487 int i = 0;
adamstark@46 488 int k,t = 0;
adamstark@54 489 double x_thresh[N];
adamstark@46 490
adamstark@46 491 int p_post = 7;
adamstark@46 492 int p_pre = 8;
adamstark@46 493
adamstark@52 494 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46 495
adamstark@46 496 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46 497 for (i = 0;i <= t;i++)
adamstark@46 498 {
adamstark@52 499 k = std::min((i+p_pre),N);
adamstark@57 500 x_thresh[i] = calculateMeanOfArray(x,1,k);
adamstark@46 501 }
adamstark@46 502 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46 503 for (i = t+1;i < N-p_post;i++)
adamstark@46 504 {
adamstark@57 505 x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post);
adamstark@46 506 }
adamstark@46 507 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46 508 for (i = N-p_post;i < N;i++)
adamstark@46 509 {
adamstark@52 510 k = std::max((i-p_post),1);
adamstark@57 511 x_thresh[i] = calculateMeanOfArray(x,k,N);
adamstark@46 512 }
adamstark@46 513
adamstark@46 514 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@46 515 for (i = 0;i < N;i++)
adamstark@46 516 {
adamstark@46 517 x[i] = x[i] - x_thresh[i];
adamstark@46 518 if (x[i] < 0)
adamstark@46 519 {
adamstark@46 520 x[i] = 0;
adamstark@46 521 }
adamstark@46 522 }
adamstark@46 523 }
adamstark@46 524
adamstark@51 525 //=======================================================================
adamstark@57 526 void BTrack::calculateOutputOfCombFilterBank()
adamstark@46 527 {
adamstark@46 528 int numelem;
adamstark@46 529
adamstark@46 530 for (int i = 0;i < 128;i++)
adamstark@46 531 {
adamstark@58 532 combFilterBankOutput[i] = 0;
adamstark@46 533 }
adamstark@46 534
adamstark@46 535 numelem = 4;
adamstark@46 536
adamstark@46 537 for (int i = 2;i <= 127;i++) // max beat period
adamstark@46 538 {
adamstark@46 539 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@46 540 {
adamstark@46 541 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@46 542 {
adamstark@58 543 combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46 544 }
adamstark@46 545 }
adamstark@46 546 }
adamstark@46 547 }
adamstark@46 548
adamstark@51 549 //=======================================================================
adamstark@60 550 void BTrack::calculateBalancedACF(double *onsetDetectionFunction)
adamstark@46 551 {
adamstark@88 552 int onsetDetectionFunctionLength = 512;
adamstark@88 553
adamstark@88 554 // copy into complex array and zero pad
adamstark@88 555 for (int i = 0;i < FFTLengthForACFCalculation;i++)
adamstark@88 556 {
adamstark@88 557 if (i < onsetDetectionFunctionLength)
adamstark@88 558 {
adamstark@88 559 complexIn[i][0] = onsetDetectionFunction[i];
adamstark@88 560 complexIn[i][1] = 0.0;
adamstark@88 561 }
adamstark@88 562 else
adamstark@88 563 {
adamstark@88 564 complexIn[i][0] = 0.0;
adamstark@88 565 complexIn[i][1] = 0.0;
adamstark@88 566 }
adamstark@88 567 }
adamstark@88 568
adamstark@88 569 // perform the fft
adamstark@88 570 fftw_execute(acfForwardFFT);
adamstark@88 571
adamstark@88 572 // multiply by complex conjugate
adamstark@88 573 for (int i = 0;i < FFTLengthForACFCalculation;i++)
adamstark@88 574 {
adamstark@88 575 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
adamstark@88 576 complexOut[i][1] = 0.0;
adamstark@88 577 }
adamstark@88 578
adamstark@88 579 // perform the ifft
adamstark@88 580 fftw_execute(acfBackwardFFT);
adamstark@88 581
adamstark@88 582
adamstark@88 583 double lag = 512;
adamstark@88 584
adamstark@88 585 for (int i = 0;i < 512;i++)
adamstark@88 586 {
adamstark@88 587 // calculate absolute value of result
adamstark@88 588 double absValue = sqrt(complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
adamstark@88 589
adamstark@88 590 // divide by inverse lad to deal with scale bias towards small lags
adamstark@88 591 acf[i] = absValue / lag;
adamstark@88 592
adamstark@88 593 // this division by 1024 is technically unnecessary but it ensures the algorithm produces
adamstark@88 594 // exactly the same ACF output as the old time domain implementation. The time difference is
adamstark@88 595 // minimal so I decided to keep it
adamstark@88 596 acf[i] = acf[i] / 1024.;
adamstark@88 597
adamstark@88 598 lag = lag - 1.;
adamstark@88 599 }
adamstark@46 600 }
adamstark@46 601
adamstark@51 602 //=======================================================================
adamstark@59 603 double BTrack::calculateMeanOfArray(double *array,int startIndex,int endIndex)
adamstark@46 604 {
adamstark@46 605 int i;
adamstark@47 606 double sum = 0;
adamstark@47 607
adamstark@59 608 int length = endIndex - startIndex;
adamstark@46 609
adamstark@46 610 // find sum
adamstark@59 611 for (i = startIndex;i < endIndex;i++)
adamstark@46 612 {
adamstark@46 613 sum = sum + array[i];
adamstark@46 614 }
adamstark@46 615
adamstark@47 616 if (length > 0)
adamstark@47 617 {
adamstark@47 618 return sum / length; // average and return
adamstark@47 619 }
adamstark@47 620 else
adamstark@47 621 {
adamstark@47 622 return 0;
adamstark@47 623 }
adamstark@46 624 }
adamstark@46 625
adamstark@51 626 //=======================================================================
adamstark@57 627 void BTrack::normaliseArray(double *array,int N)
adamstark@46 628 {
adamstark@46 629 double sum = 0;
adamstark@46 630
adamstark@46 631 for (int i = 0;i < N;i++)
adamstark@46 632 {
adamstark@46 633 if (array[i] > 0)
adamstark@46 634 {
adamstark@46 635 sum = sum + array[i];
adamstark@46 636 }
adamstark@46 637 }
adamstark@46 638
adamstark@46 639 if (sum > 0)
adamstark@46 640 {
adamstark@46 641 for (int i = 0;i < N;i++)
adamstark@46 642 {
adamstark@46 643 array[i] = array[i] / sum;
adamstark@46 644 }
adamstark@46 645 }
adamstark@46 646 }
adamstark@46 647
adamstark@51 648 //=======================================================================
adamstark@59 649 void BTrack::updateCumulativeScore(double odfSample)
adamstark@46 650 {
adamstark@46 651 int start, end, winsize;
adamstark@54 652 double max;
adamstark@46 653
adamstark@58 654 start = onsetDFBufferSize - round(2*beatPeriod);
adamstark@58 655 end = onsetDFBufferSize - round(beatPeriod/2);
adamstark@46 656 winsize = end-start+1;
adamstark@46 657
adamstark@54 658 double w1[winsize];
adamstark@57 659 double v = -2*beatPeriod;
adamstark@54 660 double wcumscore;
adamstark@46 661
adamstark@46 662
adamstark@46 663 // create window
adamstark@46 664 for (int i = 0;i < winsize;i++)
adamstark@46 665 {
adamstark@57 666 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46 667 v = v+1;
adamstark@46 668 }
adamstark@46 669
adamstark@46 670 // calculate new cumulative score value
adamstark@46 671 max = 0;
adamstark@46 672 int n = 0;
adamstark@46 673 for (int i=start;i <= end;i++)
adamstark@46 674 {
adamstark@58 675 wcumscore = cumulativeScore[i]*w1[n];
adamstark@46 676
adamstark@46 677 if (wcumscore > max)
adamstark@46 678 {
adamstark@46 679 max = wcumscore;
adamstark@46 680 }
adamstark@46 681 n++;
adamstark@46 682 }
adamstark@46 683
adamstark@46 684
adamstark@46 685 // shift cumulative score back one
adamstark@58 686 for (int i = 0;i < (onsetDFBufferSize-1);i++)
adamstark@46 687 {
adamstark@58 688 cumulativeScore[i] = cumulativeScore[i+1];
adamstark@46 689 }
adamstark@46 690
adamstark@46 691 // add new value to cumulative score
adamstark@59 692 cumulativeScore[onsetDFBufferSize-1] = ((1-alpha)*odfSample) + (alpha*max);
adamstark@46 693
adamstark@58 694 latestCumulativeScoreValue = cumulativeScore[onsetDFBufferSize-1];
adamstark@58 695
adamstark@46 696 }
adamstark@46 697
adamstark@51 698 //=======================================================================
adamstark@57 699 void BTrack::predictBeat()
adamstark@46 700 {
adamstark@58 701 int windowSize = (int) beatPeriod;
adamstark@58 702 double futureCumulativeScore[onsetDFBufferSize + windowSize];
adamstark@58 703 double w2[windowSize];
adamstark@46 704 // copy cumscore to first part of fcumscore
adamstark@58 705 for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@46 706 {
adamstark@58 707 futureCumulativeScore[i] = cumulativeScore[i];
adamstark@46 708 }
adamstark@46 709
adamstark@46 710 // create future window
adamstark@54 711 double v = 1;
adamstark@58 712 for (int i = 0;i < windowSize;i++)
adamstark@46 713 {
adamstark@57 714 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
adamstark@46 715 v++;
adamstark@46 716 }
adamstark@46 717
adamstark@46 718 // create past window
adamstark@57 719 v = -2*beatPeriod;
adamstark@58 720 int start = onsetDFBufferSize - round(2*beatPeriod);
adamstark@58 721 int end = onsetDFBufferSize - round(beatPeriod/2);
adamstark@46 722 int pastwinsize = end-start+1;
adamstark@54 723 double w1[pastwinsize];
adamstark@46 724
adamstark@46 725 for (int i = 0;i < pastwinsize;i++)
adamstark@46 726 {
adamstark@57 727 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46 728 v = v+1;
adamstark@46 729 }
adamstark@46 730
adamstark@46 731
adamstark@46 732
adamstark@46 733 // calculate future cumulative score
adamstark@54 734 double max;
adamstark@46 735 int n;
adamstark@54 736 double wcumscore;
adamstark@58 737 for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++)
adamstark@46 738 {
adamstark@57 739 start = i - round(2*beatPeriod);
adamstark@57 740 end = i - round(beatPeriod/2);
adamstark@46 741
adamstark@46 742 max = 0;
adamstark@46 743 n = 0;
adamstark@46 744 for (int k=start;k <= end;k++)
adamstark@46 745 {
adamstark@58 746 wcumscore = futureCumulativeScore[k]*w1[n];
adamstark@46 747
adamstark@46 748 if (wcumscore > max)
adamstark@46 749 {
adamstark@46 750 max = wcumscore;
adamstark@46 751 }
adamstark@46 752 n++;
adamstark@46 753 }
adamstark@46 754
adamstark@58 755 futureCumulativeScore[i] = max;
adamstark@46 756 }
adamstark@46 757
adamstark@46 758
adamstark@46 759 // predict beat
adamstark@46 760 max = 0;
adamstark@46 761 n = 0;
adamstark@46 762
adamstark@58 763 for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++)
adamstark@46 764 {
adamstark@58 765 wcumscore = futureCumulativeScore[i]*w2[n];
adamstark@46 766
adamstark@46 767 if (wcumscore > max)
adamstark@46 768 {
adamstark@46 769 max = wcumscore;
adamstark@58 770 beatCounter = n;
adamstark@46 771 }
adamstark@46 772
adamstark@46 773 n++;
adamstark@46 774 }
adamstark@46 775
adamstark@46 776 // set next prediction time
adamstark@58 777 m0 = beatCounter+round(beatPeriod/2);
adamstark@46 778
adamstark@46 779
adamstark@46 780 }