adamstark@46
|
1 //=======================================================================
|
adamstark@46
|
2 /** @file BTrack.cpp
|
adamstark@47
|
3 * @brief BTrack - a real-time beat tracker
|
adamstark@46
|
4 * @author Adam Stark
|
adamstark@46
|
5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
|
adamstark@46
|
6 *
|
adamstark@46
|
7 * This program is free software: you can redistribute it and/or modify
|
adamstark@46
|
8 * it under the terms of the GNU General Public License as published by
|
adamstark@46
|
9 * the Free Software Foundation, either version 3 of the License, or
|
adamstark@46
|
10 * (at your option) any later version.
|
adamstark@46
|
11 *
|
adamstark@46
|
12 * This program is distributed in the hope that it will be useful,
|
adamstark@46
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
adamstark@46
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
adamstark@46
|
15 * GNU General Public License for more details.
|
adamstark@46
|
16 *
|
adamstark@46
|
17 * You should have received a copy of the GNU General Public License
|
adamstark@46
|
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
adamstark@46
|
19 */
|
adamstark@46
|
20 //=======================================================================
|
adamstark@46
|
21
|
adamstark@46
|
22 #include <cmath>
|
adamstark@52
|
23 #include <algorithm>
|
adamstark@46
|
24 #include "BTrack.h"
|
adamstark@46
|
25 #include "samplerate.h"
|
adamstark@46
|
26
|
adamstark@55
|
27 //=======================================================================
|
adamstark@57
|
28 BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow)
|
adamstark@55
|
29 {
|
adamstark@55
|
30 initialise(512, 1024);
|
adamstark@55
|
31 }
|
adamstark@46
|
32
|
adamstark@51
|
33 //=======================================================================
|
adamstark@57
|
34 BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow)
|
adamstark@46
|
35 {
|
adamstark@57
|
36 initialise(hopSize_, 2*hopSize_);
|
adamstark@55
|
37 }
|
adamstark@55
|
38
|
adamstark@55
|
39 //=======================================================================
|
adamstark@57
|
40 BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow)
|
adamstark@55
|
41 {
|
adamstark@57
|
42 initialise(hopSize_, frameSize_);
|
adamstark@55
|
43 }
|
adamstark@55
|
44
|
adamstark@55
|
45 //=======================================================================
|
adamstark@55
|
46 double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs)
|
adamstark@55
|
47 {
|
adamstark@55
|
48 double hop = (double) hopSize;
|
adamstark@55
|
49 double samplingFrequency = (double) fs;
|
adamstark@55
|
50 double frameNum = (double) frameNumber;
|
adamstark@55
|
51
|
adamstark@55
|
52 return ((hop / samplingFrequency) * frameNum);
|
adamstark@55
|
53 }
|
adamstark@55
|
54
|
adamstark@55
|
55 //=======================================================================
|
adamstark@55
|
56 double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs)
|
adamstark@55
|
57 {
|
adamstark@55
|
58 long frameNum = (long) frameNumber;
|
adamstark@55
|
59
|
adamstark@55
|
60 return getBeatTimeInSeconds(frameNum, hopSize, fs);
|
adamstark@55
|
61 }
|
adamstark@55
|
62
|
adamstark@55
|
63
|
adamstark@55
|
64
|
adamstark@55
|
65 //=======================================================================
|
adamstark@57
|
66 void BTrack::initialise(int hopSize_, int frameSize_)
|
adamstark@55
|
67 {
|
adamstark@55
|
68 double rayparam = 43;
|
adamstark@54
|
69 double pi = 3.14159265;
|
adamstark@46
|
70
|
adamstark@46
|
71
|
adamstark@46
|
72 // initialise parameters
|
adamstark@46
|
73 tightness = 5;
|
adamstark@46
|
74 alpha = 0.9;
|
adamstark@46
|
75 tempo = 120;
|
adamstark@46
|
76 est_tempo = 120;
|
adamstark@46
|
77 p_fact = 60.*44100./512.;
|
adamstark@46
|
78
|
adamstark@46
|
79 m0 = 10;
|
adamstark@46
|
80 beat = -1;
|
adamstark@46
|
81
|
adamstark@57
|
82 beatDueInFrame = false;
|
adamstark@46
|
83
|
adamstark@46
|
84
|
adamstark@46
|
85
|
adamstark@46
|
86
|
adamstark@46
|
87 // create rayleigh weighting vector
|
adamstark@46
|
88 for (int n = 0;n < 128;n++)
|
adamstark@46
|
89 {
|
adamstark@54
|
90 wv[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
|
adamstark@46
|
91 }
|
adamstark@46
|
92
|
adamstark@46
|
93 // initialise prev_delta
|
adamstark@46
|
94 for (int i = 0;i < 41;i++)
|
adamstark@46
|
95 {
|
adamstark@46
|
96 prev_delta[i] = 1;
|
adamstark@46
|
97 }
|
adamstark@46
|
98
|
adamstark@54
|
99 double t_mu = 41/2;
|
adamstark@54
|
100 double m_sig;
|
adamstark@54
|
101 double x;
|
adamstark@46
|
102 // create tempo transition matrix
|
adamstark@46
|
103 m_sig = 41/8;
|
adamstark@46
|
104 for (int i = 0;i < 41;i++)
|
adamstark@46
|
105 {
|
adamstark@46
|
106 for (int j = 0;j < 41;j++)
|
adamstark@46
|
107 {
|
adamstark@46
|
108 x = j+1;
|
adamstark@46
|
109 t_mu = i+1;
|
adamstark@46
|
110 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
|
adamstark@46
|
111 }
|
adamstark@55
|
112 }
|
adamstark@46
|
113
|
adamstark@46
|
114 // tempo is not fixed
|
adamstark@46
|
115 tempofix = 0;
|
adamstark@55
|
116
|
adamstark@55
|
117 // initialise algorithm given the hopsize
|
adamstark@57
|
118 setHopSize(hopSize_);
|
adamstark@46
|
119 }
|
adamstark@46
|
120
|
adamstark@51
|
121 //=======================================================================
|
adamstark@57
|
122 void BTrack::setHopSize(int hopSize_)
|
adamstark@46
|
123 {
|
adamstark@57
|
124 hopSize = hopSize_;
|
adamstark@55
|
125 dfbuffer_size = (512*512)/hopSize; // calculate df buffer size
|
adamstark@46
|
126
|
adamstark@57
|
127 beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
|
adamstark@46
|
128
|
adamstark@54
|
129 dfbuffer = new double[dfbuffer_size]; // create df_buffer
|
adamstark@54
|
130 cumscore = new double[dfbuffer_size]; // create cumscore
|
adamstark@46
|
131
|
adamstark@46
|
132
|
adamstark@46
|
133 // initialise df_buffer to zeros
|
adamstark@46
|
134 for (int i = 0;i < dfbuffer_size;i++)
|
adamstark@46
|
135 {
|
adamstark@46
|
136 dfbuffer[i] = 0;
|
adamstark@46
|
137 cumscore[i] = 0;
|
adamstark@46
|
138
|
adamstark@46
|
139
|
adamstark@57
|
140 if ((i % ((int) round(beatPeriod))) == 0)
|
adamstark@46
|
141 {
|
adamstark@46
|
142 dfbuffer[i] = 1;
|
adamstark@46
|
143 }
|
adamstark@46
|
144 }
|
adamstark@46
|
145 }
|
adamstark@46
|
146
|
adamstark@51
|
147 //=======================================================================
|
adamstark@57
|
148 bool BTrack::beatDueInCurrentFrame()
|
adamstark@57
|
149 {
|
adamstark@57
|
150 return beatDueInFrame;
|
adamstark@57
|
151 }
|
adamstark@57
|
152
|
adamstark@57
|
153 //=======================================================================
|
adamstark@57
|
154 int BTrack::getHopSize()
|
adamstark@57
|
155 {
|
adamstark@57
|
156 return hopSize;
|
adamstark@57
|
157 }
|
adamstark@57
|
158
|
adamstark@57
|
159 //=======================================================================
|
adamstark@55
|
160 void BTrack::processAudioFrame(double *frame)
|
adamstark@55
|
161 {
|
adamstark@55
|
162 // calculate the onset detection function sample for the frame
|
adamstark@55
|
163 double sample = odf.getDFsample(frame);
|
adamstark@55
|
164
|
adamstark@56
|
165
|
adamstark@55
|
166
|
adamstark@55
|
167 // process the new onset detection function sample in the beat tracking algorithm
|
adamstark@55
|
168 processOnsetDetectionFunctionSample(sample);
|
adamstark@55
|
169 }
|
adamstark@55
|
170
|
adamstark@55
|
171 //=======================================================================
|
adamstark@55
|
172 void BTrack::processOnsetDetectionFunctionSample(double newSample)
|
adamstark@56
|
173 {
|
adamstark@56
|
174 // we need to ensure that the onset
|
adamstark@56
|
175 // detection function sample is positive
|
adamstark@56
|
176 newSample = fabs(newSample);
|
adamstark@56
|
177
|
adamstark@56
|
178 // add a tiny constant to the sample to stop it from ever going
|
adamstark@56
|
179 // to zero. this is to avoid problems further down the line
|
adamstark@56
|
180 newSample = newSample + 0.0001;
|
adamstark@56
|
181
|
adamstark@46
|
182 m0--;
|
adamstark@46
|
183 beat--;
|
adamstark@57
|
184 beatDueInFrame = false;
|
adamstark@46
|
185
|
adamstark@46
|
186 // move all samples back one step
|
adamstark@46
|
187 for (int i=0;i < (dfbuffer_size-1);i++)
|
adamstark@46
|
188 {
|
adamstark@46
|
189 dfbuffer[i] = dfbuffer[i+1];
|
adamstark@46
|
190 }
|
adamstark@46
|
191
|
adamstark@46
|
192 // add new sample at the end
|
adamstark@55
|
193 dfbuffer[dfbuffer_size-1] = newSample;
|
adamstark@46
|
194
|
adamstark@46
|
195 // update cumulative score
|
adamstark@57
|
196 updateCumulativeScore(newSample);
|
adamstark@46
|
197
|
adamstark@46
|
198 // if we are halfway between beats
|
adamstark@46
|
199 if (m0 == 0)
|
adamstark@46
|
200 {
|
adamstark@57
|
201 predictBeat();
|
adamstark@46
|
202 }
|
adamstark@46
|
203
|
adamstark@46
|
204 // if we are at a beat
|
adamstark@46
|
205 if (beat == 0)
|
adamstark@46
|
206 {
|
adamstark@57
|
207 beatDueInFrame = true; // indicate a beat should be output
|
adamstark@46
|
208
|
adamstark@46
|
209 // recalculate the tempo
|
adamstark@57
|
210 resampleOnsetDetectionFunction();
|
adamstark@57
|
211 calculateTempo();
|
adamstark@46
|
212 }
|
adamstark@46
|
213 }
|
adamstark@46
|
214
|
adamstark@51
|
215 //=======================================================================
|
adamstark@57
|
216 void BTrack::setTempo(double tempo)
|
adamstark@46
|
217 {
|
adamstark@46
|
218
|
adamstark@46
|
219 /////////// TEMPO INDICATION RESET //////////////////
|
adamstark@46
|
220
|
adamstark@46
|
221 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
222 while (tempo > 160)
|
adamstark@46
|
223 {
|
adamstark@46
|
224 tempo = tempo/2;
|
adamstark@46
|
225 }
|
adamstark@46
|
226
|
adamstark@46
|
227 while (tempo < 80)
|
adamstark@46
|
228 {
|
adamstark@46
|
229 tempo = tempo * 2;
|
adamstark@46
|
230 }
|
adamstark@46
|
231
|
adamstark@46
|
232 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@46
|
233 int tempo_index = (int) round((tempo - 80)/2);
|
adamstark@46
|
234
|
adamstark@46
|
235 // now set previous tempo observations to zero
|
adamstark@46
|
236 for (int i=0;i < 41;i++)
|
adamstark@46
|
237 {
|
adamstark@46
|
238 prev_delta[i] = 0;
|
adamstark@46
|
239 }
|
adamstark@46
|
240
|
adamstark@46
|
241 // set desired tempo index to 1
|
adamstark@46
|
242 prev_delta[tempo_index] = 1;
|
adamstark@46
|
243
|
adamstark@46
|
244
|
adamstark@46
|
245 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
|
adamstark@46
|
246
|
adamstark@46
|
247 // calculate new beat period
|
adamstark@57
|
248 int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo));
|
adamstark@46
|
249
|
adamstark@46
|
250 int bcounter = 1;
|
adamstark@46
|
251 // initialise df_buffer to zeros
|
adamstark@46
|
252 for (int i = (dfbuffer_size-1);i >= 0;i--)
|
adamstark@46
|
253 {
|
adamstark@46
|
254 if (bcounter == 1)
|
adamstark@46
|
255 {
|
adamstark@46
|
256 cumscore[i] = 150;
|
adamstark@46
|
257 dfbuffer[i] = 150;
|
adamstark@46
|
258 }
|
adamstark@46
|
259 else
|
adamstark@46
|
260 {
|
adamstark@46
|
261 cumscore[i] = 10;
|
adamstark@46
|
262 dfbuffer[i] = 10;
|
adamstark@46
|
263 }
|
adamstark@46
|
264
|
adamstark@46
|
265 bcounter++;
|
adamstark@46
|
266
|
adamstark@46
|
267 if (bcounter > new_bperiod)
|
adamstark@46
|
268 {
|
adamstark@46
|
269 bcounter = 1;
|
adamstark@46
|
270 }
|
adamstark@46
|
271 }
|
adamstark@46
|
272
|
adamstark@46
|
273 /////////// INDICATE THAT THIS IS A BEAT //////////////////
|
adamstark@46
|
274
|
adamstark@46
|
275 // beat is now
|
adamstark@46
|
276 beat = 0;
|
adamstark@46
|
277
|
adamstark@46
|
278 // offbeat is half of new beat period away
|
adamstark@54
|
279 m0 = (int) round(((double) new_bperiod)/2);
|
adamstark@46
|
280 }
|
adamstark@46
|
281
|
adamstark@51
|
282 //=======================================================================
|
adamstark@57
|
283 void BTrack::fixTempo(double tempo)
|
adamstark@46
|
284 {
|
adamstark@46
|
285 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
286 while (tempo > 160)
|
adamstark@46
|
287 {
|
adamstark@46
|
288 tempo = tempo/2;
|
adamstark@46
|
289 }
|
adamstark@46
|
290
|
adamstark@46
|
291 while (tempo < 80)
|
adamstark@46
|
292 {
|
adamstark@46
|
293 tempo = tempo * 2;
|
adamstark@46
|
294 }
|
adamstark@46
|
295
|
adamstark@46
|
296 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@46
|
297 int tempo_index = (int) round((tempo - 80)/2);
|
adamstark@46
|
298
|
adamstark@46
|
299 // now set previous fixed previous tempo observation values to zero
|
adamstark@46
|
300 for (int i=0;i < 41;i++)
|
adamstark@46
|
301 {
|
adamstark@46
|
302 prev_delta_fix[i] = 0;
|
adamstark@46
|
303 }
|
adamstark@46
|
304
|
adamstark@46
|
305 // set desired tempo index to 1
|
adamstark@46
|
306 prev_delta_fix[tempo_index] = 1;
|
adamstark@46
|
307
|
adamstark@46
|
308 // set the tempo fix flag
|
adamstark@46
|
309 tempofix = 1;
|
adamstark@46
|
310 }
|
adamstark@46
|
311
|
adamstark@51
|
312 //=======================================================================
|
adamstark@57
|
313 void BTrack::doNotFixTempo()
|
adamstark@46
|
314 {
|
adamstark@46
|
315 // set the tempo fix flag
|
adamstark@46
|
316 tempofix = 0;
|
adamstark@46
|
317 }
|
adamstark@46
|
318
|
adamstark@51
|
319 //=======================================================================
|
adamstark@57
|
320 void BTrack::resampleOnsetDetectionFunction()
|
adamstark@46
|
321 {
|
adamstark@46
|
322 float output[512];
|
adamstark@54
|
323 float input[dfbuffer_size];
|
adamstark@54
|
324
|
adamstark@54
|
325 for (int i = 0;i < dfbuffer_size;i++)
|
adamstark@54
|
326 {
|
adamstark@54
|
327 input[i] = (float) dfbuffer[i];
|
adamstark@54
|
328 }
|
adamstark@46
|
329
|
adamstark@46
|
330 double src_ratio = 512.0/((double) dfbuffer_size);
|
adamstark@46
|
331 int BUFFER_LEN = dfbuffer_size;
|
adamstark@46
|
332 int output_len;
|
adamstark@46
|
333 SRC_DATA src_data ;
|
adamstark@46
|
334
|
adamstark@46
|
335 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
|
adamstark@46
|
336 output_len = 512;
|
adamstark@46
|
337
|
adamstark@54
|
338 src_data.data_in = input;
|
adamstark@46
|
339 src_data.input_frames = BUFFER_LEN;
|
adamstark@46
|
340
|
adamstark@46
|
341 src_data.src_ratio = src_ratio;
|
adamstark@46
|
342
|
adamstark@46
|
343 src_data.data_out = output;
|
adamstark@46
|
344 src_data.output_frames = output_len;
|
adamstark@46
|
345
|
adamstark@46
|
346 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
|
adamstark@46
|
347
|
adamstark@46
|
348 for (int i = 0;i < output_len;i++)
|
adamstark@46
|
349 {
|
adamstark@54
|
350 df512[i] = (double) src_data.data_out[i];
|
adamstark@46
|
351 }
|
adamstark@46
|
352 }
|
adamstark@46
|
353
|
adamstark@51
|
354 //=======================================================================
|
adamstark@57
|
355 void BTrack::calculateTempo()
|
adamstark@46
|
356 {
|
adamstark@46
|
357 // adaptive threshold on input
|
adamstark@57
|
358 adaptiveThreshold(df512,512);
|
adamstark@46
|
359
|
adamstark@46
|
360 // calculate auto-correlation function of detection function
|
adamstark@57
|
361 calculateBalancedACF(df512);
|
adamstark@46
|
362
|
adamstark@46
|
363 // calculate output of comb filterbank
|
adamstark@57
|
364 calculateOutputOfCombFilterBank();
|
adamstark@46
|
365
|
adamstark@46
|
366
|
adamstark@46
|
367 // adaptive threshold on rcf
|
adamstark@57
|
368 adaptiveThreshold(rcf,128);
|
adamstark@46
|
369
|
adamstark@46
|
370
|
adamstark@46
|
371 int t_index;
|
adamstark@46
|
372 int t_index2;
|
adamstark@46
|
373 // calculate tempo observation vector from bperiod observation vector
|
adamstark@46
|
374 for (int i = 0;i < 41;i++)
|
adamstark@46
|
375 {
|
adamstark@54
|
376 t_index = (int) round(p_fact / ((double) ((2*i)+80)));
|
adamstark@54
|
377 t_index2 = (int) round(p_fact / ((double) ((4*i)+160)));
|
adamstark@46
|
378
|
adamstark@46
|
379
|
adamstark@46
|
380 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
|
adamstark@46
|
381 }
|
adamstark@46
|
382
|
adamstark@46
|
383
|
adamstark@54
|
384 double maxval;
|
adamstark@54
|
385 double maxind;
|
adamstark@54
|
386 double curval;
|
adamstark@46
|
387
|
adamstark@46
|
388 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
|
adamstark@46
|
389 if (tempofix == 1)
|
adamstark@46
|
390 {
|
adamstark@46
|
391 for (int k = 0;k < 41;k++)
|
adamstark@46
|
392 {
|
adamstark@46
|
393 prev_delta[k] = prev_delta_fix[k];
|
adamstark@46
|
394 }
|
adamstark@46
|
395 }
|
adamstark@46
|
396
|
adamstark@46
|
397 for (int j=0;j < 41;j++)
|
adamstark@46
|
398 {
|
adamstark@46
|
399 maxval = -1;
|
adamstark@46
|
400 for (int i = 0;i < 41;i++)
|
adamstark@46
|
401 {
|
adamstark@46
|
402 curval = prev_delta[i]*t_tmat[i][j];
|
adamstark@46
|
403
|
adamstark@46
|
404 if (curval > maxval)
|
adamstark@46
|
405 {
|
adamstark@46
|
406 maxval = curval;
|
adamstark@46
|
407 }
|
adamstark@46
|
408 }
|
adamstark@46
|
409
|
adamstark@46
|
410 delta[j] = maxval*t_obs[j];
|
adamstark@46
|
411 }
|
adamstark@46
|
412
|
adamstark@46
|
413
|
adamstark@57
|
414 normaliseArray(delta,41);
|
adamstark@46
|
415
|
adamstark@46
|
416 maxind = -1;
|
adamstark@46
|
417 maxval = -1;
|
adamstark@46
|
418
|
adamstark@46
|
419 for (int j=0;j < 41;j++)
|
adamstark@46
|
420 {
|
adamstark@46
|
421 if (delta[j] > maxval)
|
adamstark@46
|
422 {
|
adamstark@46
|
423 maxval = delta[j];
|
adamstark@46
|
424 maxind = j;
|
adamstark@46
|
425 }
|
adamstark@46
|
426
|
adamstark@46
|
427 prev_delta[j] = delta[j];
|
adamstark@46
|
428 }
|
adamstark@46
|
429
|
adamstark@57
|
430 beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize)));
|
adamstark@46
|
431
|
adamstark@57
|
432 if (beatPeriod > 0)
|
adamstark@46
|
433 {
|
adamstark@57
|
434 est_tempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod);
|
adamstark@46
|
435 }
|
adamstark@46
|
436 }
|
adamstark@46
|
437
|
adamstark@51
|
438 //=======================================================================
|
adamstark@57
|
439 void BTrack::adaptiveThreshold(double *x,int N)
|
adamstark@46
|
440 {
|
adamstark@46
|
441 //int N = 512; // length of df
|
adamstark@46
|
442 int i = 0;
|
adamstark@46
|
443 int k,t = 0;
|
adamstark@54
|
444 double x_thresh[N];
|
adamstark@46
|
445
|
adamstark@46
|
446 int p_post = 7;
|
adamstark@46
|
447 int p_pre = 8;
|
adamstark@46
|
448
|
adamstark@52
|
449 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
|
adamstark@46
|
450
|
adamstark@46
|
451 // find threshold for first 't' samples, where a full average cannot be computed yet
|
adamstark@46
|
452 for (i = 0;i <= t;i++)
|
adamstark@46
|
453 {
|
adamstark@52
|
454 k = std::min((i+p_pre),N);
|
adamstark@57
|
455 x_thresh[i] = calculateMeanOfArray(x,1,k);
|
adamstark@46
|
456 }
|
adamstark@46
|
457 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
|
adamstark@46
|
458 for (i = t+1;i < N-p_post;i++)
|
adamstark@46
|
459 {
|
adamstark@57
|
460 x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post);
|
adamstark@46
|
461 }
|
adamstark@46
|
462 // for last few samples calculate threshold, again, not enough samples to do as above
|
adamstark@46
|
463 for (i = N-p_post;i < N;i++)
|
adamstark@46
|
464 {
|
adamstark@52
|
465 k = std::max((i-p_post),1);
|
adamstark@57
|
466 x_thresh[i] = calculateMeanOfArray(x,k,N);
|
adamstark@46
|
467 }
|
adamstark@46
|
468
|
adamstark@46
|
469 // subtract the threshold from the detection function and check that it is not less than 0
|
adamstark@46
|
470 for (i = 0;i < N;i++)
|
adamstark@46
|
471 {
|
adamstark@46
|
472 x[i] = x[i] - x_thresh[i];
|
adamstark@46
|
473 if (x[i] < 0)
|
adamstark@46
|
474 {
|
adamstark@46
|
475 x[i] = 0;
|
adamstark@46
|
476 }
|
adamstark@46
|
477 }
|
adamstark@46
|
478 }
|
adamstark@46
|
479
|
adamstark@51
|
480 //=======================================================================
|
adamstark@57
|
481 void BTrack::calculateOutputOfCombFilterBank()
|
adamstark@46
|
482 {
|
adamstark@46
|
483 int numelem;
|
adamstark@46
|
484
|
adamstark@46
|
485 for (int i = 0;i < 128;i++)
|
adamstark@46
|
486 {
|
adamstark@46
|
487 rcf[i] = 0;
|
adamstark@46
|
488 }
|
adamstark@46
|
489
|
adamstark@46
|
490 numelem = 4;
|
adamstark@46
|
491
|
adamstark@46
|
492 for (int i = 2;i <= 127;i++) // max beat period
|
adamstark@46
|
493 {
|
adamstark@46
|
494 for (int a = 1;a <= numelem;a++) // number of comb elements
|
adamstark@46
|
495 {
|
adamstark@46
|
496 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
|
adamstark@46
|
497 {
|
adamstark@46
|
498 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
|
adamstark@46
|
499 }
|
adamstark@46
|
500 }
|
adamstark@46
|
501 }
|
adamstark@46
|
502 }
|
adamstark@46
|
503
|
adamstark@51
|
504 //=======================================================================
|
adamstark@57
|
505 void BTrack::calculateBalancedACF(double *df_thresh)
|
adamstark@46
|
506 {
|
adamstark@46
|
507 int l, n = 0;
|
adamstark@54
|
508 double sum, tmp;
|
adamstark@46
|
509
|
adamstark@46
|
510 // for l lags from 0-511
|
adamstark@46
|
511 for (l = 0;l < 512;l++)
|
adamstark@46
|
512 {
|
adamstark@46
|
513 sum = 0;
|
adamstark@46
|
514
|
adamstark@46
|
515 // for n samples from 0 - (512-lag)
|
adamstark@46
|
516 for (n = 0;n < (512-l);n++)
|
adamstark@46
|
517 {
|
adamstark@46
|
518 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
|
adamstark@46
|
519 sum = sum + tmp; // add to sum
|
adamstark@46
|
520 }
|
adamstark@46
|
521
|
adamstark@46
|
522 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
|
adamstark@46
|
523 }
|
adamstark@46
|
524 }
|
adamstark@46
|
525
|
adamstark@51
|
526 //=======================================================================
|
adamstark@57
|
527 double BTrack::calculateMeanOfArray(double *array,int start,int end)
|
adamstark@46
|
528 {
|
adamstark@46
|
529 int i;
|
adamstark@47
|
530 double sum = 0;
|
adamstark@47
|
531
|
adamstark@47
|
532 int length = end - start;
|
adamstark@46
|
533
|
adamstark@46
|
534 // find sum
|
adamstark@47
|
535 for (i = start;i < end;i++)
|
adamstark@46
|
536 {
|
adamstark@46
|
537 sum = sum + array[i];
|
adamstark@46
|
538 }
|
adamstark@46
|
539
|
adamstark@47
|
540 if (length > 0)
|
adamstark@47
|
541 {
|
adamstark@47
|
542 return sum / length; // average and return
|
adamstark@47
|
543 }
|
adamstark@47
|
544 else
|
adamstark@47
|
545 {
|
adamstark@47
|
546 return 0;
|
adamstark@47
|
547 }
|
adamstark@46
|
548 }
|
adamstark@46
|
549
|
adamstark@51
|
550 //=======================================================================
|
adamstark@57
|
551 void BTrack::normaliseArray(double *array,int N)
|
adamstark@46
|
552 {
|
adamstark@46
|
553 double sum = 0;
|
adamstark@46
|
554
|
adamstark@46
|
555 for (int i = 0;i < N;i++)
|
adamstark@46
|
556 {
|
adamstark@46
|
557 if (array[i] > 0)
|
adamstark@46
|
558 {
|
adamstark@46
|
559 sum = sum + array[i];
|
adamstark@46
|
560 }
|
adamstark@46
|
561 }
|
adamstark@46
|
562
|
adamstark@46
|
563 if (sum > 0)
|
adamstark@46
|
564 {
|
adamstark@46
|
565 for (int i = 0;i < N;i++)
|
adamstark@46
|
566 {
|
adamstark@46
|
567 array[i] = array[i] / sum;
|
adamstark@46
|
568 }
|
adamstark@46
|
569 }
|
adamstark@46
|
570 }
|
adamstark@46
|
571
|
adamstark@51
|
572 //=======================================================================
|
adamstark@57
|
573 void BTrack::updateCumulativeScore(double df_sample)
|
adamstark@46
|
574 {
|
adamstark@46
|
575 int start, end, winsize;
|
adamstark@54
|
576 double max;
|
adamstark@46
|
577
|
adamstark@57
|
578 start = dfbuffer_size - round(2*beatPeriod);
|
adamstark@57
|
579 end = dfbuffer_size - round(beatPeriod/2);
|
adamstark@46
|
580 winsize = end-start+1;
|
adamstark@46
|
581
|
adamstark@54
|
582 double w1[winsize];
|
adamstark@57
|
583 double v = -2*beatPeriod;
|
adamstark@54
|
584 double wcumscore;
|
adamstark@46
|
585
|
adamstark@46
|
586
|
adamstark@46
|
587 // create window
|
adamstark@46
|
588 for (int i = 0;i < winsize;i++)
|
adamstark@46
|
589 {
|
adamstark@57
|
590 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
|
adamstark@46
|
591 v = v+1;
|
adamstark@46
|
592 }
|
adamstark@46
|
593
|
adamstark@46
|
594 // calculate new cumulative score value
|
adamstark@46
|
595 max = 0;
|
adamstark@46
|
596 int n = 0;
|
adamstark@46
|
597 for (int i=start;i <= end;i++)
|
adamstark@46
|
598 {
|
adamstark@46
|
599 wcumscore = cumscore[i]*w1[n];
|
adamstark@46
|
600
|
adamstark@46
|
601 if (wcumscore > max)
|
adamstark@46
|
602 {
|
adamstark@46
|
603 max = wcumscore;
|
adamstark@46
|
604 }
|
adamstark@46
|
605 n++;
|
adamstark@46
|
606 }
|
adamstark@46
|
607
|
adamstark@46
|
608
|
adamstark@46
|
609 // shift cumulative score back one
|
adamstark@46
|
610 for (int i = 0;i < (dfbuffer_size-1);i++)
|
adamstark@46
|
611 {
|
adamstark@46
|
612 cumscore[i] = cumscore[i+1];
|
adamstark@46
|
613 }
|
adamstark@46
|
614
|
adamstark@46
|
615 // add new value to cumulative score
|
adamstark@46
|
616 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
|
adamstark@46
|
617
|
adamstark@46
|
618 cscoreval = cumscore[dfbuffer_size-1];
|
adamstark@46
|
619
|
adamstark@46
|
620 //cout << cumscore[dfbuffer_size-1] << endl;
|
adamstark@46
|
621
|
adamstark@46
|
622 }
|
adamstark@46
|
623
|
adamstark@51
|
624 //=======================================================================
|
adamstark@57
|
625 void BTrack::predictBeat()
|
adamstark@46
|
626 {
|
adamstark@57
|
627 int winsize = (int) beatPeriod;
|
adamstark@54
|
628 double fcumscore[dfbuffer_size + winsize];
|
adamstark@54
|
629 double w2[winsize];
|
adamstark@46
|
630 // copy cumscore to first part of fcumscore
|
adamstark@46
|
631 for (int i = 0;i < dfbuffer_size;i++)
|
adamstark@46
|
632 {
|
adamstark@46
|
633 fcumscore[i] = cumscore[i];
|
adamstark@46
|
634 }
|
adamstark@46
|
635
|
adamstark@46
|
636 // create future window
|
adamstark@54
|
637 double v = 1;
|
adamstark@46
|
638 for (int i = 0;i < winsize;i++)
|
adamstark@46
|
639 {
|
adamstark@57
|
640 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
|
adamstark@46
|
641 v++;
|
adamstark@46
|
642 }
|
adamstark@46
|
643
|
adamstark@46
|
644 // create past window
|
adamstark@57
|
645 v = -2*beatPeriod;
|
adamstark@57
|
646 int start = dfbuffer_size - round(2*beatPeriod);
|
adamstark@57
|
647 int end = dfbuffer_size - round(beatPeriod/2);
|
adamstark@46
|
648 int pastwinsize = end-start+1;
|
adamstark@54
|
649 double w1[pastwinsize];
|
adamstark@46
|
650
|
adamstark@46
|
651 for (int i = 0;i < pastwinsize;i++)
|
adamstark@46
|
652 {
|
adamstark@57
|
653 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
|
adamstark@46
|
654 v = v+1;
|
adamstark@46
|
655 }
|
adamstark@46
|
656
|
adamstark@46
|
657
|
adamstark@46
|
658
|
adamstark@46
|
659 // calculate future cumulative score
|
adamstark@54
|
660 double max;
|
adamstark@46
|
661 int n;
|
adamstark@54
|
662 double wcumscore;
|
adamstark@46
|
663 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
|
adamstark@46
|
664 {
|
adamstark@57
|
665 start = i - round(2*beatPeriod);
|
adamstark@57
|
666 end = i - round(beatPeriod/2);
|
adamstark@46
|
667
|
adamstark@46
|
668 max = 0;
|
adamstark@46
|
669 n = 0;
|
adamstark@46
|
670 for (int k=start;k <= end;k++)
|
adamstark@46
|
671 {
|
adamstark@46
|
672 wcumscore = fcumscore[k]*w1[n];
|
adamstark@46
|
673
|
adamstark@46
|
674 if (wcumscore > max)
|
adamstark@46
|
675 {
|
adamstark@46
|
676 max = wcumscore;
|
adamstark@46
|
677 }
|
adamstark@46
|
678 n++;
|
adamstark@46
|
679 }
|
adamstark@46
|
680
|
adamstark@46
|
681 fcumscore[i] = max;
|
adamstark@46
|
682 }
|
adamstark@46
|
683
|
adamstark@46
|
684
|
adamstark@46
|
685 // predict beat
|
adamstark@46
|
686 max = 0;
|
adamstark@46
|
687 n = 0;
|
adamstark@46
|
688
|
adamstark@46
|
689 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
|
adamstark@46
|
690 {
|
adamstark@46
|
691 wcumscore = fcumscore[i]*w2[n];
|
adamstark@46
|
692
|
adamstark@46
|
693 if (wcumscore > max)
|
adamstark@46
|
694 {
|
adamstark@46
|
695 max = wcumscore;
|
adamstark@46
|
696 beat = n;
|
adamstark@46
|
697 }
|
adamstark@46
|
698
|
adamstark@46
|
699 n++;
|
adamstark@46
|
700 }
|
adamstark@46
|
701
|
adamstark@46
|
702 // set next prediction time
|
adamstark@57
|
703 m0 = beat+round(beatPeriod/2);
|
adamstark@46
|
704
|
adamstark@46
|
705
|
adamstark@46
|
706 } |