adamstark@46: //=======================================================================
adamstark@46: /** @file BTrack.cpp
adamstark@47: * @brief BTrack - a real-time beat tracker
adamstark@46: * @author Adam Stark
adamstark@46: * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46: *
adamstark@46: * This program is free software: you can redistribute it and/or modify
adamstark@46: * it under the terms of the GNU General Public License as published by
adamstark@46: * the Free Software Foundation, either version 3 of the License, or
adamstark@46: * (at your option) any later version.
adamstark@46: *
adamstark@46: * This program is distributed in the hope that it will be useful,
adamstark@46: * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46: * GNU General Public License for more details.
adamstark@46: *
adamstark@46: * You should have received a copy of the GNU General Public License
adamstark@46: * along with this program. If not, see .
adamstark@46: */
adamstark@46: //=======================================================================
adamstark@46:
adamstark@46: #include
adamstark@52: #include
adamstark@46: #include "BTrack.h"
adamstark@46: #include "samplerate.h"
adamstark@46:
adamstark@55: //=======================================================================
adamstark@57: BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@55: {
adamstark@55: initialise(512, 1024);
adamstark@55: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@46: {
adamstark@57: initialise(hopSize_, 2*hopSize_);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@57: BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@55: {
adamstark@57: initialise(hopSize_, frameSize_);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@55: double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs)
adamstark@55: {
adamstark@55: double hop = (double) hopSize;
adamstark@55: double samplingFrequency = (double) fs;
adamstark@55: double frameNum = (double) frameNumber;
adamstark@55:
adamstark@55: return ((hop / samplingFrequency) * frameNum);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@55: double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs)
adamstark@55: {
adamstark@55: long frameNum = (long) frameNumber;
adamstark@55:
adamstark@55: return getBeatTimeInSeconds(frameNum, hopSize, fs);
adamstark@55: }
adamstark@55:
adamstark@55:
adamstark@55:
adamstark@55: //=======================================================================
adamstark@57: void BTrack::initialise(int hopSize_, int frameSize_)
adamstark@55: {
adamstark@55: double rayparam = 43;
adamstark@54: double pi = 3.14159265;
adamstark@46:
adamstark@46:
adamstark@46: // initialise parameters
adamstark@46: tightness = 5;
adamstark@46: alpha = 0.9;
adamstark@46: tempo = 120;
adamstark@46: est_tempo = 120;
adamstark@46: p_fact = 60.*44100./512.;
adamstark@46:
adamstark@46: m0 = 10;
adamstark@46: beat = -1;
adamstark@46:
adamstark@57: beatDueInFrame = false;
adamstark@46:
adamstark@46:
adamstark@46:
adamstark@46:
adamstark@46: // create rayleigh weighting vector
adamstark@46: for (int n = 0;n < 128;n++)
adamstark@46: {
adamstark@54: wv[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
adamstark@46: }
adamstark@46:
adamstark@46: // initialise prev_delta
adamstark@46: for (int i = 0;i < 41;i++)
adamstark@46: {
adamstark@46: prev_delta[i] = 1;
adamstark@46: }
adamstark@46:
adamstark@54: double t_mu = 41/2;
adamstark@54: double m_sig;
adamstark@54: double x;
adamstark@46: // create tempo transition matrix
adamstark@46: m_sig = 41/8;
adamstark@46: for (int i = 0;i < 41;i++)
adamstark@46: {
adamstark@46: for (int j = 0;j < 41;j++)
adamstark@46: {
adamstark@46: x = j+1;
adamstark@46: t_mu = i+1;
adamstark@46: t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46: }
adamstark@55: }
adamstark@46:
adamstark@46: // tempo is not fixed
adamstark@46: tempofix = 0;
adamstark@55:
adamstark@55: // initialise algorithm given the hopsize
adamstark@57: setHopSize(hopSize_);
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::setHopSize(int hopSize_)
adamstark@46: {
adamstark@57: hopSize = hopSize_;
adamstark@55: dfbuffer_size = (512*512)/hopSize; // calculate df buffer size
adamstark@46:
adamstark@57: beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
adamstark@46:
adamstark@54: dfbuffer = new double[dfbuffer_size]; // create df_buffer
adamstark@54: cumscore = new double[dfbuffer_size]; // create cumscore
adamstark@46:
adamstark@46:
adamstark@46: // initialise df_buffer to zeros
adamstark@46: for (int i = 0;i < dfbuffer_size;i++)
adamstark@46: {
adamstark@46: dfbuffer[i] = 0;
adamstark@46: cumscore[i] = 0;
adamstark@46:
adamstark@46:
adamstark@57: if ((i % ((int) round(beatPeriod))) == 0)
adamstark@46: {
adamstark@46: dfbuffer[i] = 1;
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: bool BTrack::beatDueInCurrentFrame()
adamstark@57: {
adamstark@57: return beatDueInFrame;
adamstark@57: }
adamstark@57:
adamstark@57: //=======================================================================
adamstark@57: int BTrack::getHopSize()
adamstark@57: {
adamstark@57: return hopSize;
adamstark@57: }
adamstark@57:
adamstark@57: //=======================================================================
adamstark@55: void BTrack::processAudioFrame(double *frame)
adamstark@55: {
adamstark@55: // calculate the onset detection function sample for the frame
adamstark@55: double sample = odf.getDFsample(frame);
adamstark@55:
adamstark@56:
adamstark@55:
adamstark@55: // process the new onset detection function sample in the beat tracking algorithm
adamstark@55: processOnsetDetectionFunctionSample(sample);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@55: void BTrack::processOnsetDetectionFunctionSample(double newSample)
adamstark@56: {
adamstark@56: // we need to ensure that the onset
adamstark@56: // detection function sample is positive
adamstark@56: newSample = fabs(newSample);
adamstark@56:
adamstark@56: // add a tiny constant to the sample to stop it from ever going
adamstark@56: // to zero. this is to avoid problems further down the line
adamstark@56: newSample = newSample + 0.0001;
adamstark@56:
adamstark@46: m0--;
adamstark@46: beat--;
adamstark@57: beatDueInFrame = false;
adamstark@46:
adamstark@46: // move all samples back one step
adamstark@46: for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@46: {
adamstark@46: dfbuffer[i] = dfbuffer[i+1];
adamstark@46: }
adamstark@46:
adamstark@46: // add new sample at the end
adamstark@55: dfbuffer[dfbuffer_size-1] = newSample;
adamstark@46:
adamstark@46: // update cumulative score
adamstark@57: updateCumulativeScore(newSample);
adamstark@46:
adamstark@46: // if we are halfway between beats
adamstark@46: if (m0 == 0)
adamstark@46: {
adamstark@57: predictBeat();
adamstark@46: }
adamstark@46:
adamstark@46: // if we are at a beat
adamstark@46: if (beat == 0)
adamstark@46: {
adamstark@57: beatDueInFrame = true; // indicate a beat should be output
adamstark@46:
adamstark@46: // recalculate the tempo
adamstark@57: resampleOnsetDetectionFunction();
adamstark@57: calculateTempo();
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::setTempo(double tempo)
adamstark@46: {
adamstark@46:
adamstark@46: /////////// TEMPO INDICATION RESET //////////////////
adamstark@46:
adamstark@46: // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46: while (tempo > 160)
adamstark@46: {
adamstark@46: tempo = tempo/2;
adamstark@46: }
adamstark@46:
adamstark@46: while (tempo < 80)
adamstark@46: {
adamstark@46: tempo = tempo * 2;
adamstark@46: }
adamstark@46:
adamstark@46: // convert tempo from bpm value to integer index of tempo probability
adamstark@46: int tempo_index = (int) round((tempo - 80)/2);
adamstark@46:
adamstark@46: // now set previous tempo observations to zero
adamstark@46: for (int i=0;i < 41;i++)
adamstark@46: {
adamstark@46: prev_delta[i] = 0;
adamstark@46: }
adamstark@46:
adamstark@46: // set desired tempo index to 1
adamstark@46: prev_delta[tempo_index] = 1;
adamstark@46:
adamstark@46:
adamstark@46: /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46:
adamstark@46: // calculate new beat period
adamstark@57: int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo));
adamstark@46:
adamstark@46: int bcounter = 1;
adamstark@46: // initialise df_buffer to zeros
adamstark@46: for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@46: {
adamstark@46: if (bcounter == 1)
adamstark@46: {
adamstark@46: cumscore[i] = 150;
adamstark@46: dfbuffer[i] = 150;
adamstark@46: }
adamstark@46: else
adamstark@46: {
adamstark@46: cumscore[i] = 10;
adamstark@46: dfbuffer[i] = 10;
adamstark@46: }
adamstark@46:
adamstark@46: bcounter++;
adamstark@46:
adamstark@46: if (bcounter > new_bperiod)
adamstark@46: {
adamstark@46: bcounter = 1;
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@46: /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46:
adamstark@46: // beat is now
adamstark@46: beat = 0;
adamstark@46:
adamstark@46: // offbeat is half of new beat period away
adamstark@54: m0 = (int) round(((double) new_bperiod)/2);
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::fixTempo(double tempo)
adamstark@46: {
adamstark@46: // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46: while (tempo > 160)
adamstark@46: {
adamstark@46: tempo = tempo/2;
adamstark@46: }
adamstark@46:
adamstark@46: while (tempo < 80)
adamstark@46: {
adamstark@46: tempo = tempo * 2;
adamstark@46: }
adamstark@46:
adamstark@46: // convert tempo from bpm value to integer index of tempo probability
adamstark@46: int tempo_index = (int) round((tempo - 80)/2);
adamstark@46:
adamstark@46: // now set previous fixed previous tempo observation values to zero
adamstark@46: for (int i=0;i < 41;i++)
adamstark@46: {
adamstark@46: prev_delta_fix[i] = 0;
adamstark@46: }
adamstark@46:
adamstark@46: // set desired tempo index to 1
adamstark@46: prev_delta_fix[tempo_index] = 1;
adamstark@46:
adamstark@46: // set the tempo fix flag
adamstark@46: tempofix = 1;
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::doNotFixTempo()
adamstark@46: {
adamstark@46: // set the tempo fix flag
adamstark@46: tempofix = 0;
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::resampleOnsetDetectionFunction()
adamstark@46: {
adamstark@46: float output[512];
adamstark@54: float input[dfbuffer_size];
adamstark@54:
adamstark@54: for (int i = 0;i < dfbuffer_size;i++)
adamstark@54: {
adamstark@54: input[i] = (float) dfbuffer[i];
adamstark@54: }
adamstark@46:
adamstark@46: double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@46: int BUFFER_LEN = dfbuffer_size;
adamstark@46: int output_len;
adamstark@46: SRC_DATA src_data ;
adamstark@46:
adamstark@46: //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@46: output_len = 512;
adamstark@46:
adamstark@54: src_data.data_in = input;
adamstark@46: src_data.input_frames = BUFFER_LEN;
adamstark@46:
adamstark@46: src_data.src_ratio = src_ratio;
adamstark@46:
adamstark@46: src_data.data_out = output;
adamstark@46: src_data.output_frames = output_len;
adamstark@46:
adamstark@46: src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@46:
adamstark@46: for (int i = 0;i < output_len;i++)
adamstark@46: {
adamstark@54: df512[i] = (double) src_data.data_out[i];
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::calculateTempo()
adamstark@46: {
adamstark@46: // adaptive threshold on input
adamstark@57: adaptiveThreshold(df512,512);
adamstark@46:
adamstark@46: // calculate auto-correlation function of detection function
adamstark@57: calculateBalancedACF(df512);
adamstark@46:
adamstark@46: // calculate output of comb filterbank
adamstark@57: calculateOutputOfCombFilterBank();
adamstark@46:
adamstark@46:
adamstark@46: // adaptive threshold on rcf
adamstark@57: adaptiveThreshold(rcf,128);
adamstark@46:
adamstark@46:
adamstark@46: int t_index;
adamstark@46: int t_index2;
adamstark@46: // calculate tempo observation vector from bperiod observation vector
adamstark@46: for (int i = 0;i < 41;i++)
adamstark@46: {
adamstark@54: t_index = (int) round(p_fact / ((double) ((2*i)+80)));
adamstark@54: t_index2 = (int) round(p_fact / ((double) ((4*i)+160)));
adamstark@46:
adamstark@46:
adamstark@46: t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@54: double maxval;
adamstark@54: double maxind;
adamstark@54: double curval;
adamstark@46:
adamstark@46: // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@46: if (tempofix == 1)
adamstark@46: {
adamstark@46: for (int k = 0;k < 41;k++)
adamstark@46: {
adamstark@46: prev_delta[k] = prev_delta_fix[k];
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@46: for (int j=0;j < 41;j++)
adamstark@46: {
adamstark@46: maxval = -1;
adamstark@46: for (int i = 0;i < 41;i++)
adamstark@46: {
adamstark@46: curval = prev_delta[i]*t_tmat[i][j];
adamstark@46:
adamstark@46: if (curval > maxval)
adamstark@46: {
adamstark@46: maxval = curval;
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@46: delta[j] = maxval*t_obs[j];
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@57: normaliseArray(delta,41);
adamstark@46:
adamstark@46: maxind = -1;
adamstark@46: maxval = -1;
adamstark@46:
adamstark@46: for (int j=0;j < 41;j++)
adamstark@46: {
adamstark@46: if (delta[j] > maxval)
adamstark@46: {
adamstark@46: maxval = delta[j];
adamstark@46: maxind = j;
adamstark@46: }
adamstark@46:
adamstark@46: prev_delta[j] = delta[j];
adamstark@46: }
adamstark@46:
adamstark@57: beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize)));
adamstark@46:
adamstark@57: if (beatPeriod > 0)
adamstark@46: {
adamstark@57: est_tempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod);
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::adaptiveThreshold(double *x,int N)
adamstark@46: {
adamstark@46: //int N = 512; // length of df
adamstark@46: int i = 0;
adamstark@46: int k,t = 0;
adamstark@54: double x_thresh[N];
adamstark@46:
adamstark@46: int p_post = 7;
adamstark@46: int p_pre = 8;
adamstark@46:
adamstark@52: t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46:
adamstark@46: // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46: for (i = 0;i <= t;i++)
adamstark@46: {
adamstark@52: k = std::min((i+p_pre),N);
adamstark@57: x_thresh[i] = calculateMeanOfArray(x,1,k);
adamstark@46: }
adamstark@46: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46: for (i = t+1;i < N-p_post;i++)
adamstark@46: {
adamstark@57: x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post);
adamstark@46: }
adamstark@46: // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46: for (i = N-p_post;i < N;i++)
adamstark@46: {
adamstark@52: k = std::max((i-p_post),1);
adamstark@57: x_thresh[i] = calculateMeanOfArray(x,k,N);
adamstark@46: }
adamstark@46:
adamstark@46: // subtract the threshold from the detection function and check that it is not less than 0
adamstark@46: for (i = 0;i < N;i++)
adamstark@46: {
adamstark@46: x[i] = x[i] - x_thresh[i];
adamstark@46: if (x[i] < 0)
adamstark@46: {
adamstark@46: x[i] = 0;
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::calculateOutputOfCombFilterBank()
adamstark@46: {
adamstark@46: int numelem;
adamstark@46:
adamstark@46: for (int i = 0;i < 128;i++)
adamstark@46: {
adamstark@46: rcf[i] = 0;
adamstark@46: }
adamstark@46:
adamstark@46: numelem = 4;
adamstark@46:
adamstark@46: for (int i = 2;i <= 127;i++) // max beat period
adamstark@46: {
adamstark@46: for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@46: {
adamstark@46: for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@46: {
adamstark@46: rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::calculateBalancedACF(double *df_thresh)
adamstark@46: {
adamstark@46: int l, n = 0;
adamstark@54: double sum, tmp;
adamstark@46:
adamstark@46: // for l lags from 0-511
adamstark@46: for (l = 0;l < 512;l++)
adamstark@46: {
adamstark@46: sum = 0;
adamstark@46:
adamstark@46: // for n samples from 0 - (512-lag)
adamstark@46: for (n = 0;n < (512-l);n++)
adamstark@46: {
adamstark@46: tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@46: sum = sum + tmp; // add to sum
adamstark@46: }
adamstark@46:
adamstark@46: acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: double BTrack::calculateMeanOfArray(double *array,int start,int end)
adamstark@46: {
adamstark@46: int i;
adamstark@47: double sum = 0;
adamstark@47:
adamstark@47: int length = end - start;
adamstark@46:
adamstark@46: // find sum
adamstark@47: for (i = start;i < end;i++)
adamstark@46: {
adamstark@46: sum = sum + array[i];
adamstark@46: }
adamstark@46:
adamstark@47: if (length > 0)
adamstark@47: {
adamstark@47: return sum / length; // average and return
adamstark@47: }
adamstark@47: else
adamstark@47: {
adamstark@47: return 0;
adamstark@47: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::normaliseArray(double *array,int N)
adamstark@46: {
adamstark@46: double sum = 0;
adamstark@46:
adamstark@46: for (int i = 0;i < N;i++)
adamstark@46: {
adamstark@46: if (array[i] > 0)
adamstark@46: {
adamstark@46: sum = sum + array[i];
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@46: if (sum > 0)
adamstark@46: {
adamstark@46: for (int i = 0;i < N;i++)
adamstark@46: {
adamstark@46: array[i] = array[i] / sum;
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::updateCumulativeScore(double df_sample)
adamstark@46: {
adamstark@46: int start, end, winsize;
adamstark@54: double max;
adamstark@46:
adamstark@57: start = dfbuffer_size - round(2*beatPeriod);
adamstark@57: end = dfbuffer_size - round(beatPeriod/2);
adamstark@46: winsize = end-start+1;
adamstark@46:
adamstark@54: double w1[winsize];
adamstark@57: double v = -2*beatPeriod;
adamstark@54: double wcumscore;
adamstark@46:
adamstark@46:
adamstark@46: // create window
adamstark@46: for (int i = 0;i < winsize;i++)
adamstark@46: {
adamstark@57: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46: v = v+1;
adamstark@46: }
adamstark@46:
adamstark@46: // calculate new cumulative score value
adamstark@46: max = 0;
adamstark@46: int n = 0;
adamstark@46: for (int i=start;i <= end;i++)
adamstark@46: {
adamstark@46: wcumscore = cumscore[i]*w1[n];
adamstark@46:
adamstark@46: if (wcumscore > max)
adamstark@46: {
adamstark@46: max = wcumscore;
adamstark@46: }
adamstark@46: n++;
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@46: // shift cumulative score back one
adamstark@46: for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@46: {
adamstark@46: cumscore[i] = cumscore[i+1];
adamstark@46: }
adamstark@46:
adamstark@46: // add new value to cumulative score
adamstark@46: cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@46:
adamstark@46: cscoreval = cumscore[dfbuffer_size-1];
adamstark@46:
adamstark@46: //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@46:
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::predictBeat()
adamstark@46: {
adamstark@57: int winsize = (int) beatPeriod;
adamstark@54: double fcumscore[dfbuffer_size + winsize];
adamstark@54: double w2[winsize];
adamstark@46: // copy cumscore to first part of fcumscore
adamstark@46: for (int i = 0;i < dfbuffer_size;i++)
adamstark@46: {
adamstark@46: fcumscore[i] = cumscore[i];
adamstark@46: }
adamstark@46:
adamstark@46: // create future window
adamstark@54: double v = 1;
adamstark@46: for (int i = 0;i < winsize;i++)
adamstark@46: {
adamstark@57: w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
adamstark@46: v++;
adamstark@46: }
adamstark@46:
adamstark@46: // create past window
adamstark@57: v = -2*beatPeriod;
adamstark@57: int start = dfbuffer_size - round(2*beatPeriod);
adamstark@57: int end = dfbuffer_size - round(beatPeriod/2);
adamstark@46: int pastwinsize = end-start+1;
adamstark@54: double w1[pastwinsize];
adamstark@46:
adamstark@46: for (int i = 0;i < pastwinsize;i++)
adamstark@46: {
adamstark@57: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46: v = v+1;
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@46:
adamstark@46: // calculate future cumulative score
adamstark@54: double max;
adamstark@46: int n;
adamstark@54: double wcumscore;
adamstark@46: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46: {
adamstark@57: start = i - round(2*beatPeriod);
adamstark@57: end = i - round(beatPeriod/2);
adamstark@46:
adamstark@46: max = 0;
adamstark@46: n = 0;
adamstark@46: for (int k=start;k <= end;k++)
adamstark@46: {
adamstark@46: wcumscore = fcumscore[k]*w1[n];
adamstark@46:
adamstark@46: if (wcumscore > max)
adamstark@46: {
adamstark@46: max = wcumscore;
adamstark@46: }
adamstark@46: n++;
adamstark@46: }
adamstark@46:
adamstark@46: fcumscore[i] = max;
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@46: // predict beat
adamstark@46: max = 0;
adamstark@46: n = 0;
adamstark@46:
adamstark@46: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46: {
adamstark@46: wcumscore = fcumscore[i]*w2[n];
adamstark@46:
adamstark@46: if (wcumscore > max)
adamstark@46: {
adamstark@46: max = wcumscore;
adamstark@46: beat = n;
adamstark@46: }
adamstark@46:
adamstark@46: n++;
adamstark@46: }
adamstark@46:
adamstark@46: // set next prediction time
adamstark@57: m0 = beat+round(beatPeriod/2);
adamstark@46:
adamstark@46:
adamstark@46: }