adamstark@46: //======================================================================= adamstark@46: /** @file BTrack.cpp adamstark@47: * @brief BTrack - a real-time beat tracker adamstark@46: * @author Adam Stark adamstark@46: * @copyright Copyright (C) 2008-2014 Queen Mary University of London adamstark@46: * adamstark@46: * This program is free software: you can redistribute it and/or modify adamstark@46: * it under the terms of the GNU General Public License as published by adamstark@46: * the Free Software Foundation, either version 3 of the License, or adamstark@46: * (at your option) any later version. adamstark@46: * adamstark@46: * This program is distributed in the hope that it will be useful, adamstark@46: * but WITHOUT ANY WARRANTY; without even the implied warranty of adamstark@46: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the adamstark@46: * GNU General Public License for more details. adamstark@46: * adamstark@46: * You should have received a copy of the GNU General Public License adamstark@46: * along with this program. If not, see . adamstark@46: */ adamstark@46: //======================================================================= adamstark@46: adamstark@46: #include adamstark@52: #include adamstark@46: #include "BTrack.h" adamstark@46: #include "samplerate.h" adamstark@46: adamstark@55: //======================================================================= adamstark@57: BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow) adamstark@55: { adamstark@55: initialise(512, 1024); adamstark@55: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow) adamstark@46: { adamstark@57: initialise(hopSize_, 2*hopSize_); adamstark@55: } adamstark@55: adamstark@55: //======================================================================= adamstark@57: BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow) adamstark@55: { adamstark@57: initialise(hopSize_, frameSize_); adamstark@55: } adamstark@55: adamstark@55: //======================================================================= adamstark@55: double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs) adamstark@55: { adamstark@55: double hop = (double) hopSize; adamstark@55: double samplingFrequency = (double) fs; adamstark@55: double frameNum = (double) frameNumber; adamstark@55: adamstark@55: return ((hop / samplingFrequency) * frameNum); adamstark@55: } adamstark@55: adamstark@55: //======================================================================= adamstark@55: double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs) adamstark@55: { adamstark@55: long frameNum = (long) frameNumber; adamstark@55: adamstark@55: return getBeatTimeInSeconds(frameNum, hopSize, fs); adamstark@55: } adamstark@55: adamstark@55: adamstark@55: adamstark@55: //======================================================================= adamstark@57: void BTrack::initialise(int hopSize_, int frameSize_) adamstark@55: { adamstark@55: double rayparam = 43; adamstark@54: double pi = 3.14159265; adamstark@46: adamstark@46: adamstark@46: // initialise parameters adamstark@46: tightness = 5; adamstark@46: alpha = 0.9; adamstark@46: tempo = 120; adamstark@46: est_tempo = 120; adamstark@46: p_fact = 60.*44100./512.; adamstark@46: adamstark@46: m0 = 10; adamstark@46: beat = -1; adamstark@46: adamstark@57: beatDueInFrame = false; adamstark@46: adamstark@46: adamstark@46: adamstark@46: adamstark@46: // create rayleigh weighting vector adamstark@46: for (int n = 0;n < 128;n++) adamstark@46: { adamstark@54: wv[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); adamstark@46: } adamstark@46: adamstark@46: // initialise prev_delta adamstark@46: for (int i = 0;i < 41;i++) adamstark@46: { adamstark@46: prev_delta[i] = 1; adamstark@46: } adamstark@46: adamstark@54: double t_mu = 41/2; adamstark@54: double m_sig; adamstark@54: double x; adamstark@46: // create tempo transition matrix adamstark@46: m_sig = 41/8; adamstark@46: for (int i = 0;i < 41;i++) adamstark@46: { adamstark@46: for (int j = 0;j < 41;j++) adamstark@46: { adamstark@46: x = j+1; adamstark@46: t_mu = i+1; adamstark@46: t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) ); adamstark@46: } adamstark@55: } adamstark@46: adamstark@46: // tempo is not fixed adamstark@46: tempofix = 0; adamstark@55: adamstark@55: // initialise algorithm given the hopsize adamstark@57: setHopSize(hopSize_); adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::setHopSize(int hopSize_) adamstark@46: { adamstark@57: hopSize = hopSize_; adamstark@55: dfbuffer_size = (512*512)/hopSize; // calculate df buffer size adamstark@46: adamstark@57: beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); adamstark@46: adamstark@54: dfbuffer = new double[dfbuffer_size]; // create df_buffer adamstark@54: cumscore = new double[dfbuffer_size]; // create cumscore adamstark@46: adamstark@46: adamstark@46: // initialise df_buffer to zeros adamstark@46: for (int i = 0;i < dfbuffer_size;i++) adamstark@46: { adamstark@46: dfbuffer[i] = 0; adamstark@46: cumscore[i] = 0; adamstark@46: adamstark@46: adamstark@57: if ((i % ((int) round(beatPeriod))) == 0) adamstark@46: { adamstark@46: dfbuffer[i] = 1; adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: bool BTrack::beatDueInCurrentFrame() adamstark@57: { adamstark@57: return beatDueInFrame; adamstark@57: } adamstark@57: adamstark@57: //======================================================================= adamstark@57: int BTrack::getHopSize() adamstark@57: { adamstark@57: return hopSize; adamstark@57: } adamstark@57: adamstark@57: //======================================================================= adamstark@55: void BTrack::processAudioFrame(double *frame) adamstark@55: { adamstark@55: // calculate the onset detection function sample for the frame adamstark@55: double sample = odf.getDFsample(frame); adamstark@55: adamstark@56: adamstark@55: adamstark@55: // process the new onset detection function sample in the beat tracking algorithm adamstark@55: processOnsetDetectionFunctionSample(sample); adamstark@55: } adamstark@55: adamstark@55: //======================================================================= adamstark@55: void BTrack::processOnsetDetectionFunctionSample(double newSample) adamstark@56: { adamstark@56: // we need to ensure that the onset adamstark@56: // detection function sample is positive adamstark@56: newSample = fabs(newSample); adamstark@56: adamstark@56: // add a tiny constant to the sample to stop it from ever going adamstark@56: // to zero. this is to avoid problems further down the line adamstark@56: newSample = newSample + 0.0001; adamstark@56: adamstark@46: m0--; adamstark@46: beat--; adamstark@57: beatDueInFrame = false; adamstark@46: adamstark@46: // move all samples back one step adamstark@46: for (int i=0;i < (dfbuffer_size-1);i++) adamstark@46: { adamstark@46: dfbuffer[i] = dfbuffer[i+1]; adamstark@46: } adamstark@46: adamstark@46: // add new sample at the end adamstark@55: dfbuffer[dfbuffer_size-1] = newSample; adamstark@46: adamstark@46: // update cumulative score adamstark@57: updateCumulativeScore(newSample); adamstark@46: adamstark@46: // if we are halfway between beats adamstark@46: if (m0 == 0) adamstark@46: { adamstark@57: predictBeat(); adamstark@46: } adamstark@46: adamstark@46: // if we are at a beat adamstark@46: if (beat == 0) adamstark@46: { adamstark@57: beatDueInFrame = true; // indicate a beat should be output adamstark@46: adamstark@46: // recalculate the tempo adamstark@57: resampleOnsetDetectionFunction(); adamstark@57: calculateTempo(); adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::setTempo(double tempo) adamstark@46: { adamstark@46: adamstark@46: /////////// TEMPO INDICATION RESET ////////////////// adamstark@46: adamstark@46: // firstly make sure tempo is between 80 and 160 bpm.. adamstark@46: while (tempo > 160) adamstark@46: { adamstark@46: tempo = tempo/2; adamstark@46: } adamstark@46: adamstark@46: while (tempo < 80) adamstark@46: { adamstark@46: tempo = tempo * 2; adamstark@46: } adamstark@46: adamstark@46: // convert tempo from bpm value to integer index of tempo probability adamstark@46: int tempo_index = (int) round((tempo - 80)/2); adamstark@46: adamstark@46: // now set previous tempo observations to zero adamstark@46: for (int i=0;i < 41;i++) adamstark@46: { adamstark@46: prev_delta[i] = 0; adamstark@46: } adamstark@46: adamstark@46: // set desired tempo index to 1 adamstark@46: prev_delta[tempo_index] = 1; adamstark@46: adamstark@46: adamstark@46: /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE ////////////////// adamstark@46: adamstark@46: // calculate new beat period adamstark@57: int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo)); adamstark@46: adamstark@46: int bcounter = 1; adamstark@46: // initialise df_buffer to zeros adamstark@46: for (int i = (dfbuffer_size-1);i >= 0;i--) adamstark@46: { adamstark@46: if (bcounter == 1) adamstark@46: { adamstark@46: cumscore[i] = 150; adamstark@46: dfbuffer[i] = 150; adamstark@46: } adamstark@46: else adamstark@46: { adamstark@46: cumscore[i] = 10; adamstark@46: dfbuffer[i] = 10; adamstark@46: } adamstark@46: adamstark@46: bcounter++; adamstark@46: adamstark@46: if (bcounter > new_bperiod) adamstark@46: { adamstark@46: bcounter = 1; adamstark@46: } adamstark@46: } adamstark@46: adamstark@46: /////////// INDICATE THAT THIS IS A BEAT ////////////////// adamstark@46: adamstark@46: // beat is now adamstark@46: beat = 0; adamstark@46: adamstark@46: // offbeat is half of new beat period away adamstark@54: m0 = (int) round(((double) new_bperiod)/2); adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::fixTempo(double tempo) adamstark@46: { adamstark@46: // firstly make sure tempo is between 80 and 160 bpm.. adamstark@46: while (tempo > 160) adamstark@46: { adamstark@46: tempo = tempo/2; adamstark@46: } adamstark@46: adamstark@46: while (tempo < 80) adamstark@46: { adamstark@46: tempo = tempo * 2; adamstark@46: } adamstark@46: adamstark@46: // convert tempo from bpm value to integer index of tempo probability adamstark@46: int tempo_index = (int) round((tempo - 80)/2); adamstark@46: adamstark@46: // now set previous fixed previous tempo observation values to zero adamstark@46: for (int i=0;i < 41;i++) adamstark@46: { adamstark@46: prev_delta_fix[i] = 0; adamstark@46: } adamstark@46: adamstark@46: // set desired tempo index to 1 adamstark@46: prev_delta_fix[tempo_index] = 1; adamstark@46: adamstark@46: // set the tempo fix flag adamstark@46: tempofix = 1; adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::doNotFixTempo() adamstark@46: { adamstark@46: // set the tempo fix flag adamstark@46: tempofix = 0; adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::resampleOnsetDetectionFunction() adamstark@46: { adamstark@46: float output[512]; adamstark@54: float input[dfbuffer_size]; adamstark@54: adamstark@54: for (int i = 0;i < dfbuffer_size;i++) adamstark@54: { adamstark@54: input[i] = (float) dfbuffer[i]; adamstark@54: } adamstark@46: adamstark@46: double src_ratio = 512.0/((double) dfbuffer_size); adamstark@46: int BUFFER_LEN = dfbuffer_size; adamstark@46: int output_len; adamstark@46: SRC_DATA src_data ; adamstark@46: adamstark@46: //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; adamstark@46: output_len = 512; adamstark@46: adamstark@54: src_data.data_in = input; adamstark@46: src_data.input_frames = BUFFER_LEN; adamstark@46: adamstark@46: src_data.src_ratio = src_ratio; adamstark@46: adamstark@46: src_data.data_out = output; adamstark@46: src_data.output_frames = output_len; adamstark@46: adamstark@46: src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); adamstark@46: adamstark@46: for (int i = 0;i < output_len;i++) adamstark@46: { adamstark@54: df512[i] = (double) src_data.data_out[i]; adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::calculateTempo() adamstark@46: { adamstark@46: // adaptive threshold on input adamstark@57: adaptiveThreshold(df512,512); adamstark@46: adamstark@46: // calculate auto-correlation function of detection function adamstark@57: calculateBalancedACF(df512); adamstark@46: adamstark@46: // calculate output of comb filterbank adamstark@57: calculateOutputOfCombFilterBank(); adamstark@46: adamstark@46: adamstark@46: // adaptive threshold on rcf adamstark@57: adaptiveThreshold(rcf,128); adamstark@46: adamstark@46: adamstark@46: int t_index; adamstark@46: int t_index2; adamstark@46: // calculate tempo observation vector from bperiod observation vector adamstark@46: for (int i = 0;i < 41;i++) adamstark@46: { adamstark@54: t_index = (int) round(p_fact / ((double) ((2*i)+80))); adamstark@54: t_index2 = (int) round(p_fact / ((double) ((4*i)+160))); adamstark@46: adamstark@46: adamstark@46: t_obs[i] = rcf[t_index-1] + rcf[t_index2-1]; adamstark@46: } adamstark@46: adamstark@46: adamstark@54: double maxval; adamstark@54: double maxind; adamstark@54: double curval; adamstark@46: adamstark@46: // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function adamstark@46: if (tempofix == 1) adamstark@46: { adamstark@46: for (int k = 0;k < 41;k++) adamstark@46: { adamstark@46: prev_delta[k] = prev_delta_fix[k]; adamstark@46: } adamstark@46: } adamstark@46: adamstark@46: for (int j=0;j < 41;j++) adamstark@46: { adamstark@46: maxval = -1; adamstark@46: for (int i = 0;i < 41;i++) adamstark@46: { adamstark@46: curval = prev_delta[i]*t_tmat[i][j]; adamstark@46: adamstark@46: if (curval > maxval) adamstark@46: { adamstark@46: maxval = curval; adamstark@46: } adamstark@46: } adamstark@46: adamstark@46: delta[j] = maxval*t_obs[j]; adamstark@46: } adamstark@46: adamstark@46: adamstark@57: normaliseArray(delta,41); adamstark@46: adamstark@46: maxind = -1; adamstark@46: maxval = -1; adamstark@46: adamstark@46: for (int j=0;j < 41;j++) adamstark@46: { adamstark@46: if (delta[j] > maxval) adamstark@46: { adamstark@46: maxval = delta[j]; adamstark@46: maxind = j; adamstark@46: } adamstark@46: adamstark@46: prev_delta[j] = delta[j]; adamstark@46: } adamstark@46: adamstark@57: beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); adamstark@46: adamstark@57: if (beatPeriod > 0) adamstark@46: { adamstark@57: est_tempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod); adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::adaptiveThreshold(double *x,int N) adamstark@46: { adamstark@46: //int N = 512; // length of df adamstark@46: int i = 0; adamstark@46: int k,t = 0; adamstark@54: double x_thresh[N]; adamstark@46: adamstark@46: int p_post = 7; adamstark@46: int p_pre = 8; adamstark@46: adamstark@52: t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays adamstark@46: adamstark@46: // find threshold for first 't' samples, where a full average cannot be computed yet adamstark@46: for (i = 0;i <= t;i++) adamstark@46: { adamstark@52: k = std::min((i+p_pre),N); adamstark@57: x_thresh[i] = calculateMeanOfArray(x,1,k); adamstark@46: } adamstark@46: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] adamstark@46: for (i = t+1;i < N-p_post;i++) adamstark@46: { adamstark@57: x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post); adamstark@46: } adamstark@46: // for last few samples calculate threshold, again, not enough samples to do as above adamstark@46: for (i = N-p_post;i < N;i++) adamstark@46: { adamstark@52: k = std::max((i-p_post),1); adamstark@57: x_thresh[i] = calculateMeanOfArray(x,k,N); adamstark@46: } adamstark@46: adamstark@46: // subtract the threshold from the detection function and check that it is not less than 0 adamstark@46: for (i = 0;i < N;i++) adamstark@46: { adamstark@46: x[i] = x[i] - x_thresh[i]; adamstark@46: if (x[i] < 0) adamstark@46: { adamstark@46: x[i] = 0; adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::calculateOutputOfCombFilterBank() adamstark@46: { adamstark@46: int numelem; adamstark@46: adamstark@46: for (int i = 0;i < 128;i++) adamstark@46: { adamstark@46: rcf[i] = 0; adamstark@46: } adamstark@46: adamstark@46: numelem = 4; adamstark@46: adamstark@46: for (int i = 2;i <= 127;i++) // max beat period adamstark@46: { adamstark@46: for (int a = 1;a <= numelem;a++) // number of comb elements adamstark@46: { adamstark@46: for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements adamstark@46: { adamstark@46: rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::calculateBalancedACF(double *df_thresh) adamstark@46: { adamstark@46: int l, n = 0; adamstark@54: double sum, tmp; adamstark@46: adamstark@46: // for l lags from 0-511 adamstark@46: for (l = 0;l < 512;l++) adamstark@46: { adamstark@46: sum = 0; adamstark@46: adamstark@46: // for n samples from 0 - (512-lag) adamstark@46: for (n = 0;n < (512-l);n++) adamstark@46: { adamstark@46: tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l) adamstark@46: sum = sum + tmp; // add to sum adamstark@46: } adamstark@46: adamstark@46: acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: double BTrack::calculateMeanOfArray(double *array,int start,int end) adamstark@46: { adamstark@46: int i; adamstark@47: double sum = 0; adamstark@47: adamstark@47: int length = end - start; adamstark@46: adamstark@46: // find sum adamstark@47: for (i = start;i < end;i++) adamstark@46: { adamstark@46: sum = sum + array[i]; adamstark@46: } adamstark@46: adamstark@47: if (length > 0) adamstark@47: { adamstark@47: return sum / length; // average and return adamstark@47: } adamstark@47: else adamstark@47: { adamstark@47: return 0; adamstark@47: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::normaliseArray(double *array,int N) adamstark@46: { adamstark@46: double sum = 0; adamstark@46: adamstark@46: for (int i = 0;i < N;i++) adamstark@46: { adamstark@46: if (array[i] > 0) adamstark@46: { adamstark@46: sum = sum + array[i]; adamstark@46: } adamstark@46: } adamstark@46: adamstark@46: if (sum > 0) adamstark@46: { adamstark@46: for (int i = 0;i < N;i++) adamstark@46: { adamstark@46: array[i] = array[i] / sum; adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::updateCumulativeScore(double df_sample) adamstark@46: { adamstark@46: int start, end, winsize; adamstark@54: double max; adamstark@46: adamstark@57: start = dfbuffer_size - round(2*beatPeriod); adamstark@57: end = dfbuffer_size - round(beatPeriod/2); adamstark@46: winsize = end-start+1; adamstark@46: adamstark@54: double w1[winsize]; adamstark@57: double v = -2*beatPeriod; adamstark@54: double wcumscore; adamstark@46: adamstark@46: adamstark@46: // create window adamstark@46: for (int i = 0;i < winsize;i++) adamstark@46: { adamstark@57: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); adamstark@46: v = v+1; adamstark@46: } adamstark@46: adamstark@46: // calculate new cumulative score value adamstark@46: max = 0; adamstark@46: int n = 0; adamstark@46: for (int i=start;i <= end;i++) adamstark@46: { adamstark@46: wcumscore = cumscore[i]*w1[n]; adamstark@46: adamstark@46: if (wcumscore > max) adamstark@46: { adamstark@46: max = wcumscore; adamstark@46: } adamstark@46: n++; adamstark@46: } adamstark@46: adamstark@46: adamstark@46: // shift cumulative score back one adamstark@46: for (int i = 0;i < (dfbuffer_size-1);i++) adamstark@46: { adamstark@46: cumscore[i] = cumscore[i+1]; adamstark@46: } adamstark@46: adamstark@46: // add new value to cumulative score adamstark@46: cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max); adamstark@46: adamstark@46: cscoreval = cumscore[dfbuffer_size-1]; adamstark@46: adamstark@46: //cout << cumscore[dfbuffer_size-1] << endl; adamstark@46: adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::predictBeat() adamstark@46: { adamstark@57: int winsize = (int) beatPeriod; adamstark@54: double fcumscore[dfbuffer_size + winsize]; adamstark@54: double w2[winsize]; adamstark@46: // copy cumscore to first part of fcumscore adamstark@46: for (int i = 0;i < dfbuffer_size;i++) adamstark@46: { adamstark@46: fcumscore[i] = cumscore[i]; adamstark@46: } adamstark@46: adamstark@46: // create future window adamstark@54: double v = 1; adamstark@46: for (int i = 0;i < winsize;i++) adamstark@46: { adamstark@57: w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); adamstark@46: v++; adamstark@46: } adamstark@46: adamstark@46: // create past window adamstark@57: v = -2*beatPeriod; adamstark@57: int start = dfbuffer_size - round(2*beatPeriod); adamstark@57: int end = dfbuffer_size - round(beatPeriod/2); adamstark@46: int pastwinsize = end-start+1; adamstark@54: double w1[pastwinsize]; adamstark@46: adamstark@46: for (int i = 0;i < pastwinsize;i++) adamstark@46: { adamstark@57: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); adamstark@46: v = v+1; adamstark@46: } adamstark@46: adamstark@46: adamstark@46: adamstark@46: // calculate future cumulative score adamstark@54: double max; adamstark@46: int n; adamstark@54: double wcumscore; adamstark@46: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) adamstark@46: { adamstark@57: start = i - round(2*beatPeriod); adamstark@57: end = i - round(beatPeriod/2); adamstark@46: adamstark@46: max = 0; adamstark@46: n = 0; adamstark@46: for (int k=start;k <= end;k++) adamstark@46: { adamstark@46: wcumscore = fcumscore[k]*w1[n]; adamstark@46: adamstark@46: if (wcumscore > max) adamstark@46: { adamstark@46: max = wcumscore; adamstark@46: } adamstark@46: n++; adamstark@46: } adamstark@46: adamstark@46: fcumscore[i] = max; adamstark@46: } adamstark@46: adamstark@46: adamstark@46: // predict beat adamstark@46: max = 0; adamstark@46: n = 0; adamstark@46: adamstark@46: for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) adamstark@46: { adamstark@46: wcumscore = fcumscore[i]*w2[n]; adamstark@46: adamstark@46: if (wcumscore > max) adamstark@46: { adamstark@46: max = wcumscore; adamstark@46: beat = n; adamstark@46: } adamstark@46: adamstark@46: n++; adamstark@46: } adamstark@46: adamstark@46: // set next prediction time adamstark@57: m0 = beat+round(beatPeriod/2); adamstark@46: adamstark@46: adamstark@46: }