Mercurial > hg > btrack
view src/BTrack.cpp @ 57:296af6af6c3d
Replaced switch statements in OnsetDetectionFunction with enums. Renamed lots of functions so that they have better names, in camel case. Added some unit tests for initialisation of BTrack.
author | Adam Stark <adamstark@users.noreply.github.com> |
---|---|
date | Thu, 23 Jan 2014 15:31:11 +0000 |
parents | b6d440942ff6 |
children | f84ccd07e17f |
line wrap: on
line source
//======================================================================= /** @file BTrack.cpp * @brief BTrack - a real-time beat tracker * @author Adam Stark * @copyright Copyright (C) 2008-2014 Queen Mary University of London * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ //======================================================================= #include <cmath> #include <algorithm> #include "BTrack.h" #include "samplerate.h" //======================================================================= BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow) { initialise(512, 1024); } //======================================================================= BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow) { initialise(hopSize_, 2*hopSize_); } //======================================================================= BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow) { initialise(hopSize_, frameSize_); } //======================================================================= double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs) { double hop = (double) hopSize; double samplingFrequency = (double) fs; double frameNum = (double) frameNumber; return ((hop / samplingFrequency) * frameNum); } //======================================================================= double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs) { long frameNum = (long) frameNumber; return getBeatTimeInSeconds(frameNum, hopSize, fs); } //======================================================================= void BTrack::initialise(int hopSize_, int frameSize_) { double rayparam = 43; double pi = 3.14159265; // initialise parameters tightness = 5; alpha = 0.9; tempo = 120; est_tempo = 120; p_fact = 60.*44100./512.; m0 = 10; beat = -1; beatDueInFrame = false; // create rayleigh weighting vector for (int n = 0;n < 128;n++) { wv[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); } // initialise prev_delta for (int i = 0;i < 41;i++) { prev_delta[i] = 1; } double t_mu = 41/2; double m_sig; double x; // create tempo transition matrix m_sig = 41/8; for (int i = 0;i < 41;i++) { for (int j = 0;j < 41;j++) { x = j+1; t_mu = i+1; t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) ); } } // tempo is not fixed tempofix = 0; // initialise algorithm given the hopsize setHopSize(hopSize_); } //======================================================================= void BTrack::setHopSize(int hopSize_) { hopSize = hopSize_; dfbuffer_size = (512*512)/hopSize; // calculate df buffer size beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); dfbuffer = new double[dfbuffer_size]; // create df_buffer cumscore = new double[dfbuffer_size]; // create cumscore // initialise df_buffer to zeros for (int i = 0;i < dfbuffer_size;i++) { dfbuffer[i] = 0; cumscore[i] = 0; if ((i % ((int) round(beatPeriod))) == 0) { dfbuffer[i] = 1; } } } //======================================================================= bool BTrack::beatDueInCurrentFrame() { return beatDueInFrame; } //======================================================================= int BTrack::getHopSize() { return hopSize; } //======================================================================= void BTrack::processAudioFrame(double *frame) { // calculate the onset detection function sample for the frame double sample = odf.getDFsample(frame); // process the new onset detection function sample in the beat tracking algorithm processOnsetDetectionFunctionSample(sample); } //======================================================================= void BTrack::processOnsetDetectionFunctionSample(double newSample) { // we need to ensure that the onset // detection function sample is positive newSample = fabs(newSample); // add a tiny constant to the sample to stop it from ever going // to zero. this is to avoid problems further down the line newSample = newSample + 0.0001; m0--; beat--; beatDueInFrame = false; // move all samples back one step for (int i=0;i < (dfbuffer_size-1);i++) { dfbuffer[i] = dfbuffer[i+1]; } // add new sample at the end dfbuffer[dfbuffer_size-1] = newSample; // update cumulative score updateCumulativeScore(newSample); // if we are halfway between beats if (m0 == 0) { predictBeat(); } // if we are at a beat if (beat == 0) { beatDueInFrame = true; // indicate a beat should be output // recalculate the tempo resampleOnsetDetectionFunction(); calculateTempo(); } } //======================================================================= void BTrack::setTempo(double tempo) { /////////// TEMPO INDICATION RESET ////////////////// // firstly make sure tempo is between 80 and 160 bpm.. while (tempo > 160) { tempo = tempo/2; } while (tempo < 80) { tempo = tempo * 2; } // convert tempo from bpm value to integer index of tempo probability int tempo_index = (int) round((tempo - 80)/2); // now set previous tempo observations to zero for (int i=0;i < 41;i++) { prev_delta[i] = 0; } // set desired tempo index to 1 prev_delta[tempo_index] = 1; /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE ////////////////// // calculate new beat period int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo)); int bcounter = 1; // initialise df_buffer to zeros for (int i = (dfbuffer_size-1);i >= 0;i--) { if (bcounter == 1) { cumscore[i] = 150; dfbuffer[i] = 150; } else { cumscore[i] = 10; dfbuffer[i] = 10; } bcounter++; if (bcounter > new_bperiod) { bcounter = 1; } } /////////// INDICATE THAT THIS IS A BEAT ////////////////// // beat is now beat = 0; // offbeat is half of new beat period away m0 = (int) round(((double) new_bperiod)/2); } //======================================================================= void BTrack::fixTempo(double tempo) { // firstly make sure tempo is between 80 and 160 bpm.. while (tempo > 160) { tempo = tempo/2; } while (tempo < 80) { tempo = tempo * 2; } // convert tempo from bpm value to integer index of tempo probability int tempo_index = (int) round((tempo - 80)/2); // now set previous fixed previous tempo observation values to zero for (int i=0;i < 41;i++) { prev_delta_fix[i] = 0; } // set desired tempo index to 1 prev_delta_fix[tempo_index] = 1; // set the tempo fix flag tempofix = 1; } //======================================================================= void BTrack::doNotFixTempo() { // set the tempo fix flag tempofix = 0; } //======================================================================= void BTrack::resampleOnsetDetectionFunction() { float output[512]; float input[dfbuffer_size]; for (int i = 0;i < dfbuffer_size;i++) { input[i] = (float) dfbuffer[i]; } double src_ratio = 512.0/((double) dfbuffer_size); int BUFFER_LEN = dfbuffer_size; int output_len; SRC_DATA src_data ; //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; output_len = 512; src_data.data_in = input; src_data.input_frames = BUFFER_LEN; src_data.src_ratio = src_ratio; src_data.data_out = output; src_data.output_frames = output_len; src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); for (int i = 0;i < output_len;i++) { df512[i] = (double) src_data.data_out[i]; } } //======================================================================= void BTrack::calculateTempo() { // adaptive threshold on input adaptiveThreshold(df512,512); // calculate auto-correlation function of detection function calculateBalancedACF(df512); // calculate output of comb filterbank calculateOutputOfCombFilterBank(); // adaptive threshold on rcf adaptiveThreshold(rcf,128); int t_index; int t_index2; // calculate tempo observation vector from bperiod observation vector for (int i = 0;i < 41;i++) { t_index = (int) round(p_fact / ((double) ((2*i)+80))); t_index2 = (int) round(p_fact / ((double) ((4*i)+160))); t_obs[i] = rcf[t_index-1] + rcf[t_index2-1]; } double maxval; double maxind; double curval; // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function if (tempofix == 1) { for (int k = 0;k < 41;k++) { prev_delta[k] = prev_delta_fix[k]; } } for (int j=0;j < 41;j++) { maxval = -1; for (int i = 0;i < 41;i++) { curval = prev_delta[i]*t_tmat[i][j]; if (curval > maxval) { maxval = curval; } } delta[j] = maxval*t_obs[j]; } normaliseArray(delta,41); maxind = -1; maxval = -1; for (int j=0;j < 41;j++) { if (delta[j] > maxval) { maxval = delta[j]; maxind = j; } prev_delta[j] = delta[j]; } beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); if (beatPeriod > 0) { est_tempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod); } } //======================================================================= void BTrack::adaptiveThreshold(double *x,int N) { //int N = 512; // length of df int i = 0; int k,t = 0; double x_thresh[N]; int p_post = 7; int p_pre = 8; t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays // find threshold for first 't' samples, where a full average cannot be computed yet for (i = 0;i <= t;i++) { k = std::min((i+p_pre),N); x_thresh[i] = calculateMeanOfArray(x,1,k); } // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] for (i = t+1;i < N-p_post;i++) { x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post); } // for last few samples calculate threshold, again, not enough samples to do as above for (i = N-p_post;i < N;i++) { k = std::max((i-p_post),1); x_thresh[i] = calculateMeanOfArray(x,k,N); } // subtract the threshold from the detection function and check that it is not less than 0 for (i = 0;i < N;i++) { x[i] = x[i] - x_thresh[i]; if (x[i] < 0) { x[i] = 0; } } } //======================================================================= void BTrack::calculateOutputOfCombFilterBank() { int numelem; for (int i = 0;i < 128;i++) { rcf[i] = 0; } numelem = 4; for (int i = 2;i <= 127;i++) // max beat period { for (int a = 1;a <= numelem;a++) // number of comb elements { for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements { rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row } } } } //======================================================================= void BTrack::calculateBalancedACF(double *df_thresh) { int l, n = 0; double sum, tmp; // for l lags from 0-511 for (l = 0;l < 512;l++) { sum = 0; // for n samples from 0 - (512-lag) for (n = 0;n < (512-l);n++) { tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l) sum = sum + tmp; // add to sum } acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer } } //======================================================================= double BTrack::calculateMeanOfArray(double *array,int start,int end) { int i; double sum = 0; int length = end - start; // find sum for (i = start;i < end;i++) { sum = sum + array[i]; } if (length > 0) { return sum / length; // average and return } else { return 0; } } //======================================================================= void BTrack::normaliseArray(double *array,int N) { double sum = 0; for (int i = 0;i < N;i++) { if (array[i] > 0) { sum = sum + array[i]; } } if (sum > 0) { for (int i = 0;i < N;i++) { array[i] = array[i] / sum; } } } //======================================================================= void BTrack::updateCumulativeScore(double df_sample) { int start, end, winsize; double max; start = dfbuffer_size - round(2*beatPeriod); end = dfbuffer_size - round(beatPeriod/2); winsize = end-start+1; double w1[winsize]; double v = -2*beatPeriod; double wcumscore; // create window for (int i = 0;i < winsize;i++) { w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); v = v+1; } // calculate new cumulative score value max = 0; int n = 0; for (int i=start;i <= end;i++) { wcumscore = cumscore[i]*w1[n]; if (wcumscore > max) { max = wcumscore; } n++; } // shift cumulative score back one for (int i = 0;i < (dfbuffer_size-1);i++) { cumscore[i] = cumscore[i+1]; } // add new value to cumulative score cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max); cscoreval = cumscore[dfbuffer_size-1]; //cout << cumscore[dfbuffer_size-1] << endl; } //======================================================================= void BTrack::predictBeat() { int winsize = (int) beatPeriod; double fcumscore[dfbuffer_size + winsize]; double w2[winsize]; // copy cumscore to first part of fcumscore for (int i = 0;i < dfbuffer_size;i++) { fcumscore[i] = cumscore[i]; } // create future window double v = 1; for (int i = 0;i < winsize;i++) { w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); v++; } // create past window v = -2*beatPeriod; int start = dfbuffer_size - round(2*beatPeriod); int end = dfbuffer_size - round(beatPeriod/2); int pastwinsize = end-start+1; double w1[pastwinsize]; for (int i = 0;i < pastwinsize;i++) { w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); v = v+1; } // calculate future cumulative score double max; int n; double wcumscore; for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) { start = i - round(2*beatPeriod); end = i - round(beatPeriod/2); max = 0; n = 0; for (int k=start;k <= end;k++) { wcumscore = fcumscore[k]*w1[n]; if (wcumscore > max) { max = wcumscore; } n++; } fcumscore[i] = max; } // predict beat max = 0; n = 0; for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++) { wcumscore = fcumscore[i]*w2[n]; if (wcumscore > max) { max = wcumscore; beat = n; } n++; } // set next prediction time m0 = beat+round(beatPeriod/2); }