adamstark@46
|
1 //=======================================================================
|
adamstark@46
|
2 /** @file BTrack.cpp
|
adamstark@47
|
3 * @brief BTrack - a real-time beat tracker
|
adamstark@46
|
4 * @author Adam Stark
|
adamstark@46
|
5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
|
adamstark@46
|
6 *
|
adamstark@46
|
7 * This program is free software: you can redistribute it and/or modify
|
adamstark@46
|
8 * it under the terms of the GNU General Public License as published by
|
adamstark@46
|
9 * the Free Software Foundation, either version 3 of the License, or
|
adamstark@46
|
10 * (at your option) any later version.
|
adamstark@46
|
11 *
|
adamstark@46
|
12 * This program is distributed in the hope that it will be useful,
|
adamstark@46
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
adamstark@46
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
adamstark@46
|
15 * GNU General Public License for more details.
|
adamstark@46
|
16 *
|
adamstark@46
|
17 * You should have received a copy of the GNU General Public License
|
adamstark@46
|
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
adamstark@46
|
19 */
|
adamstark@46
|
20 //=======================================================================
|
adamstark@46
|
21
|
adamstark@46
|
22 #include <cmath>
|
adamstark@52
|
23 #include <algorithm>
|
adamstark@97
|
24 #include <numeric>
|
adamstark@46
|
25 #include "BTrack.h"
|
adamstark@46
|
26 #include "samplerate.h"
|
adamstark@89
|
27 #include <iostream>
|
adamstark@46
|
28
|
adamstark@55
|
29 //=======================================================================
|
adamstark@91
|
30 BTrack::BTrack()
|
adamstark@91
|
31 : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@55
|
32 {
|
adamstark@93
|
33 initialise (512, 1024);
|
adamstark@55
|
34 }
|
adamstark@46
|
35
|
adamstark@51
|
36 //=======================================================================
|
adamstark@91
|
37 BTrack::BTrack (int hopSize_)
|
adamstark@97
|
38 : odf (hopSize_, 2 * hopSize_, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@46
|
39 {
|
adamstark@97
|
40 initialise (hopSize_, 2 * hopSize_);
|
adamstark@55
|
41 }
|
adamstark@55
|
42
|
adamstark@55
|
43 //=======================================================================
|
adamstark@91
|
44 BTrack::BTrack (int hopSize_, int frameSize_)
|
adamstark@91
|
45 : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@55
|
46 {
|
adamstark@91
|
47 initialise (hopSize_, frameSize_);
|
adamstark@55
|
48 }
|
adamstark@55
|
49
|
adamstark@55
|
50 //=======================================================================
|
adamstark@88
|
51 BTrack::~BTrack()
|
adamstark@88
|
52 {
|
adamstark@93
|
53 #ifdef USE_FFTW
|
adamstark@88
|
54 // destroy fft plan
|
adamstark@91
|
55 fftw_destroy_plan (acfForwardFFT);
|
adamstark@91
|
56 fftw_destroy_plan (acfBackwardFFT);
|
adamstark@91
|
57 fftw_free (complexIn);
|
adamstark@91
|
58 fftw_free (complexOut);
|
adamstark@93
|
59 #endif
|
adamstark@93
|
60
|
adamstark@93
|
61 #ifdef USE_KISS_FFT
|
adamstark@93
|
62 free (cfgForwards);
|
adamstark@93
|
63 free (cfgBackwards);
|
adamstark@93
|
64 delete [] fftIn;
|
adamstark@93
|
65 delete [] fftOut;
|
adamstark@93
|
66 #endif
|
adamstark@88
|
67 }
|
adamstark@88
|
68
|
adamstark@88
|
69 //=======================================================================
|
adamstark@91
|
70 double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs)
|
adamstark@55
|
71 {
|
adamstark@55
|
72 double hop = (double) hopSize;
|
adamstark@55
|
73 double samplingFrequency = (double) fs;
|
adamstark@55
|
74 double frameNum = (double) frameNumber;
|
adamstark@55
|
75
|
adamstark@55
|
76 return ((hop / samplingFrequency) * frameNum);
|
adamstark@55
|
77 }
|
adamstark@55
|
78
|
adamstark@55
|
79 //=======================================================================
|
adamstark@91
|
80 double BTrack::getBeatTimeInSeconds (int frameNumber, int hopSize, int fs)
|
adamstark@55
|
81 {
|
adamstark@55
|
82 long frameNum = (long) frameNumber;
|
adamstark@55
|
83
|
adamstark@91
|
84 return getBeatTimeInSeconds (frameNum, hopSize, fs);
|
adamstark@55
|
85 }
|
adamstark@55
|
86
|
adamstark@55
|
87 //=======================================================================
|
adamstark@91
|
88 void BTrack::initialise (int hopSize_, int frameSize_)
|
adamstark@55
|
89 {
|
adamstark@97
|
90 // set vector sizes
|
adamstark@97
|
91 resampledOnsetDF.resize (512);
|
adamstark@97
|
92 acf.resize (512);
|
adamstark@97
|
93 weightingVector.resize (128);
|
adamstark@97
|
94 combFilterBankOutput.resize (128);
|
adamstark@97
|
95 tempoObservationVector.resize (41);
|
adamstark@97
|
96 delta.resize (41);
|
adamstark@97
|
97 prevDelta.resize (41);
|
adamstark@97
|
98 prevDeltaFixed.resize (41);
|
adamstark@97
|
99
|
adamstark@98
|
100 double rayleighParameter = 43;
|
adamstark@54
|
101 double pi = 3.14159265;
|
adamstark@46
|
102
|
adamstark@46
|
103
|
adamstark@46
|
104 // initialise parameters
|
adamstark@46
|
105 tightness = 5;
|
adamstark@46
|
106 alpha = 0.9;
|
adamstark@58
|
107 estimatedTempo = 120.0;
|
adamstark@100
|
108 tempoToLagFactor = 60. * 44100. / 512.;
|
adamstark@46
|
109
|
adamstark@46
|
110 m0 = 10;
|
adamstark@58
|
111 beatCounter = -1;
|
adamstark@46
|
112
|
adamstark@57
|
113 beatDueInFrame = false;
|
adamstark@46
|
114
|
adamstark@58
|
115
|
adamstark@46
|
116 // create rayleigh weighting vector
|
adamstark@91
|
117 for (int n = 0; n < 128; n++)
|
adamstark@98
|
118 weightingVector[n] = ((double) n / pow (rayleighParameter, 2)) * exp((-1 * pow((double) - n, 2)) / (2 * pow (rayleighParameter, 2)));
|
adamstark@46
|
119
|
adamstark@100
|
120 // initialise prevDelta
|
adamstark@97
|
121 std::fill (prevDelta.begin(), prevDelta.end(), 1);
|
adamstark@97
|
122
|
adamstark@54
|
123 double t_mu = 41/2;
|
adamstark@54
|
124 double m_sig;
|
adamstark@54
|
125 double x;
|
adamstark@46
|
126 // create tempo transition matrix
|
adamstark@46
|
127 m_sig = 41/8;
|
adamstark@46
|
128 for (int i = 0;i < 41;i++)
|
adamstark@46
|
129 {
|
adamstark@46
|
130 for (int j = 0;j < 41;j++)
|
adamstark@46
|
131 {
|
adamstark@46
|
132 x = j+1;
|
adamstark@46
|
133 t_mu = i+1;
|
adamstark@58
|
134 tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
|
adamstark@46
|
135 }
|
adamstark@55
|
136 }
|
adamstark@46
|
137
|
adamstark@46
|
138 // tempo is not fixed
|
adamstark@58
|
139 tempoFixed = false;
|
adamstark@58
|
140
|
adamstark@58
|
141 // initialise latest cumulative score value
|
adamstark@58
|
142 // in case it is requested before any processing takes place
|
adamstark@58
|
143 latestCumulativeScoreValue = 0;
|
adamstark@55
|
144
|
adamstark@55
|
145 // initialise algorithm given the hopsize
|
adamstark@100
|
146 setHopSize (hopSize_);
|
adamstark@88
|
147
|
adamstark@88
|
148 // Set up FFT for calculating the auto-correlation function
|
adamstark@88
|
149 FFTLengthForACFCalculation = 1024;
|
adamstark@88
|
150
|
adamstark@93
|
151 #ifdef USE_FFTW
|
adamstark@91
|
152 complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
|
adamstark@91
|
153 complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
|
adamstark@88
|
154
|
adamstark@91
|
155 acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
|
adamstark@91
|
156 acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
|
adamstark@93
|
157 #endif
|
adamstark@93
|
158
|
adamstark@93
|
159 #ifdef USE_KISS_FFT
|
adamstark@93
|
160 fftIn = new kiss_fft_cpx[FFTLengthForACFCalculation];
|
adamstark@93
|
161 fftOut = new kiss_fft_cpx[FFTLengthForACFCalculation];
|
adamstark@93
|
162 cfgForwards = kiss_fft_alloc (FFTLengthForACFCalculation, 0, 0, 0);
|
adamstark@93
|
163 cfgBackwards = kiss_fft_alloc (FFTLengthForACFCalculation, 1, 0, 0);
|
adamstark@93
|
164 #endif
|
adamstark@46
|
165 }
|
adamstark@46
|
166
|
adamstark@51
|
167 //=======================================================================
|
adamstark@91
|
168 void BTrack::setHopSize (int hopSize_)
|
adamstark@46
|
169 {
|
adamstark@57
|
170 hopSize = hopSize_;
|
adamstark@97
|
171 onsetDFBufferSize = (512 * 512) / hopSize; // calculate df buffer size
|
adamstark@101
|
172 beatPeriod = round(60/((((double) hopSize)/44100) * 120.));
|
adamstark@63
|
173
|
adamstark@63
|
174 // set size of onset detection function buffer
|
adamstark@91
|
175 onsetDF.resize (onsetDFBufferSize);
|
adamstark@63
|
176
|
adamstark@63
|
177 // set size of cumulative score buffer
|
adamstark@91
|
178 cumulativeScore.resize (onsetDFBufferSize);
|
adamstark@46
|
179
|
adamstark@46
|
180 // initialise df_buffer to zeros
|
adamstark@91
|
181 for (int i = 0; i < onsetDFBufferSize; i++)
|
adamstark@46
|
182 {
|
adamstark@58
|
183 onsetDF[i] = 0;
|
adamstark@58
|
184 cumulativeScore[i] = 0;
|
adamstark@46
|
185
|
adamstark@57
|
186 if ((i % ((int) round(beatPeriod))) == 0)
|
adamstark@46
|
187 {
|
adamstark@58
|
188 onsetDF[i] = 1;
|
adamstark@46
|
189 }
|
adamstark@46
|
190 }
|
adamstark@46
|
191 }
|
adamstark@46
|
192
|
adamstark@51
|
193 //=======================================================================
|
adamstark@91
|
194 void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_)
|
adamstark@65
|
195 {
|
adamstark@65
|
196 // update the onset detection function object
|
adamstark@91
|
197 odf.initialise (hopSize_, frameSize_);
|
adamstark@65
|
198
|
adamstark@65
|
199 // update the hop size being used by the beat tracker
|
adamstark@91
|
200 setHopSize (hopSize_);
|
adamstark@65
|
201 }
|
adamstark@65
|
202
|
adamstark@65
|
203 //=======================================================================
|
adamstark@57
|
204 bool BTrack::beatDueInCurrentFrame()
|
adamstark@57
|
205 {
|
adamstark@57
|
206 return beatDueInFrame;
|
adamstark@57
|
207 }
|
adamstark@57
|
208
|
adamstark@57
|
209 //=======================================================================
|
adamstark@78
|
210 double BTrack::getCurrentTempoEstimate()
|
adamstark@78
|
211 {
|
adamstark@78
|
212 return estimatedTempo;
|
adamstark@78
|
213 }
|
adamstark@78
|
214
|
adamstark@78
|
215 //=======================================================================
|
adamstark@57
|
216 int BTrack::getHopSize()
|
adamstark@57
|
217 {
|
adamstark@57
|
218 return hopSize;
|
adamstark@57
|
219 }
|
adamstark@57
|
220
|
adamstark@57
|
221 //=======================================================================
|
adamstark@58
|
222 double BTrack::getLatestCumulativeScoreValue()
|
adamstark@58
|
223 {
|
adamstark@58
|
224 return latestCumulativeScoreValue;
|
adamstark@58
|
225 }
|
adamstark@58
|
226
|
adamstark@58
|
227 //=======================================================================
|
adamstark@91
|
228 void BTrack::processAudioFrame (double* frame)
|
adamstark@55
|
229 {
|
adamstark@55
|
230 // calculate the onset detection function sample for the frame
|
adamstark@91
|
231 double sample = odf.calculateOnsetDetectionFunctionSample (frame);
|
adamstark@55
|
232
|
adamstark@55
|
233 // process the new onset detection function sample in the beat tracking algorithm
|
adamstark@91
|
234 processOnsetDetectionFunctionSample (sample);
|
adamstark@55
|
235 }
|
adamstark@55
|
236
|
adamstark@55
|
237 //=======================================================================
|
adamstark@91
|
238 void BTrack::processOnsetDetectionFunctionSample (double newSample)
|
adamstark@56
|
239 {
|
adamstark@56
|
240 // we need to ensure that the onset
|
adamstark@56
|
241 // detection function sample is positive
|
adamstark@91
|
242 newSample = fabs (newSample);
|
adamstark@56
|
243
|
adamstark@56
|
244 // add a tiny constant to the sample to stop it from ever going
|
adamstark@56
|
245 // to zero. this is to avoid problems further down the line
|
adamstark@56
|
246 newSample = newSample + 0.0001;
|
adamstark@56
|
247
|
adamstark@46
|
248 m0--;
|
adamstark@58
|
249 beatCounter--;
|
adamstark@57
|
250 beatDueInFrame = false;
|
adamstark@90
|
251
|
adamstark@46
|
252 // add new sample at the end
|
adamstark@91
|
253 onsetDF.addSampleToEnd (newSample);
|
adamstark@46
|
254
|
adamstark@46
|
255 // update cumulative score
|
adamstark@91
|
256 updateCumulativeScore (newSample);
|
adamstark@46
|
257
|
adamstark@97
|
258 // if we are halfway between beats, predict a beat
|
adamstark@46
|
259 if (m0 == 0)
|
adamstark@97
|
260 predictBeat();
|
adamstark@46
|
261
|
adamstark@46
|
262 // if we are at a beat
|
adamstark@58
|
263 if (beatCounter == 0)
|
adamstark@46
|
264 {
|
adamstark@57
|
265 beatDueInFrame = true; // indicate a beat should be output
|
adamstark@46
|
266
|
adamstark@46
|
267 // recalculate the tempo
|
adamstark@57
|
268 resampleOnsetDetectionFunction();
|
adamstark@57
|
269 calculateTempo();
|
adamstark@46
|
270 }
|
adamstark@46
|
271 }
|
adamstark@46
|
272
|
adamstark@51
|
273 //=======================================================================
|
adamstark@91
|
274 void BTrack::setTempo (double tempo)
|
adamstark@97
|
275 {
|
adamstark@46
|
276 /////////// TEMPO INDICATION RESET //////////////////
|
adamstark@46
|
277
|
adamstark@46
|
278 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
279 while (tempo > 160)
|
adamstark@97
|
280 tempo = tempo / 2;
|
adamstark@46
|
281
|
adamstark@46
|
282 while (tempo < 80)
|
adamstark@97
|
283 tempo = tempo * 2;
|
adamstark@46
|
284
|
adamstark@46
|
285 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@46
|
286 int tempo_index = (int) round((tempo - 80)/2);
|
adamstark@46
|
287
|
adamstark@97
|
288 // now set previous tempo observations to zero and set desired tempo index to 1
|
adamstark@97
|
289 std::fill (prevDelta.begin(), prevDelta.end(), 0);
|
adamstark@58
|
290 prevDelta[tempo_index] = 1;
|
adamstark@46
|
291
|
adamstark@46
|
292 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
|
adamstark@46
|
293
|
adamstark@46
|
294 // calculate new beat period
|
adamstark@97
|
295 int newBeatPeriod = (int) round (60 / ((((double) hopSize) / 44100) * tempo));
|
adamstark@46
|
296
|
adamstark@97
|
297 int k = 1;
|
adamstark@97
|
298
|
adamstark@97
|
299 // initialise onset detection function with delta functions spaced
|
adamstark@97
|
300 // at the new beat period
|
adamstark@97
|
301 for (int i = onsetDFBufferSize - 1; i >= 0; i--)
|
adamstark@46
|
302 {
|
adamstark@97
|
303 if (k == 1)
|
adamstark@46
|
304 {
|
adamstark@58
|
305 cumulativeScore[i] = 150;
|
adamstark@58
|
306 onsetDF[i] = 150;
|
adamstark@46
|
307 }
|
adamstark@46
|
308 else
|
adamstark@46
|
309 {
|
adamstark@58
|
310 cumulativeScore[i] = 10;
|
adamstark@58
|
311 onsetDF[i] = 10;
|
adamstark@46
|
312 }
|
adamstark@46
|
313
|
adamstark@97
|
314 k++;
|
adamstark@46
|
315
|
adamstark@97
|
316 if (k > newBeatPeriod)
|
adamstark@46
|
317 {
|
adamstark@97
|
318 k = 1;
|
adamstark@46
|
319 }
|
adamstark@46
|
320 }
|
adamstark@46
|
321
|
adamstark@46
|
322 /////////// INDICATE THAT THIS IS A BEAT //////////////////
|
adamstark@46
|
323
|
adamstark@46
|
324 // beat is now
|
adamstark@58
|
325 beatCounter = 0;
|
adamstark@46
|
326
|
adamstark@46
|
327 // offbeat is half of new beat period away
|
adamstark@97
|
328 m0 = (int) round (((double) newBeatPeriod) / 2);
|
adamstark@46
|
329 }
|
adamstark@46
|
330
|
adamstark@51
|
331 //=======================================================================
|
adamstark@91
|
332 void BTrack::fixTempo (double tempo)
|
adamstark@46
|
333 {
|
adamstark@46
|
334 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
335 while (tempo > 160)
|
adamstark@100
|
336 tempo = tempo / 2;
|
adamstark@46
|
337
|
adamstark@46
|
338 while (tempo < 80)
|
adamstark@100
|
339 tempo = tempo * 2;
|
adamstark@46
|
340
|
adamstark@46
|
341 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@100
|
342 int tempoIndex = (int) round((tempo - 80) / 2);
|
adamstark@46
|
343
|
adamstark@46
|
344 // now set previous fixed previous tempo observation values to zero
|
adamstark@46
|
345 for (int i=0;i < 41;i++)
|
adamstark@46
|
346 {
|
adamstark@58
|
347 prevDeltaFixed[i] = 0;
|
adamstark@46
|
348 }
|
adamstark@46
|
349
|
adamstark@46
|
350 // set desired tempo index to 1
|
adamstark@100
|
351 prevDeltaFixed[tempoIndex] = 1;
|
adamstark@46
|
352
|
adamstark@46
|
353 // set the tempo fix flag
|
adamstark@58
|
354 tempoFixed = true;
|
adamstark@46
|
355 }
|
adamstark@46
|
356
|
adamstark@51
|
357 //=======================================================================
|
adamstark@57
|
358 void BTrack::doNotFixTempo()
|
adamstark@46
|
359 {
|
adamstark@46
|
360 // set the tempo fix flag
|
adamstark@58
|
361 tempoFixed = false;
|
adamstark@46
|
362 }
|
adamstark@46
|
363
|
adamstark@51
|
364 //=======================================================================
|
adamstark@57
|
365 void BTrack::resampleOnsetDetectionFunction()
|
adamstark@46
|
366 {
|
adamstark@46
|
367 float output[512];
|
adamstark@58
|
368 float input[onsetDFBufferSize];
|
adamstark@54
|
369
|
adamstark@58
|
370 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@58
|
371 input[i] = (float) onsetDF[i];
|
adamstark@89
|
372
|
adamstark@97
|
373 double ratio = 512.0 / ((double) onsetDFBufferSize);
|
adamstark@97
|
374 int bufferLength = onsetDFBufferSize;
|
adamstark@97
|
375 int outputLength = 512;
|
adamstark@89
|
376
|
adamstark@97
|
377 SRC_DATA src_data;
|
adamstark@89
|
378 src_data.data_in = input;
|
adamstark@97
|
379 src_data.input_frames = bufferLength;
|
adamstark@97
|
380 src_data.src_ratio = ratio;
|
adamstark@89
|
381 src_data.data_out = output;
|
adamstark@97
|
382 src_data.output_frames = outputLength;
|
adamstark@89
|
383
|
adamstark@89
|
384 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
|
adamstark@89
|
385
|
adamstark@97
|
386 for (int i = 0; i < outputLength; i++)
|
adamstark@89
|
387 resampledOnsetDF[i] = (double) src_data.data_out[i];
|
adamstark@46
|
388 }
|
adamstark@46
|
389
|
adamstark@51
|
390 //=======================================================================
|
adamstark@57
|
391 void BTrack::calculateTempo()
|
adamstark@46
|
392 {
|
adamstark@46
|
393 // adaptive threshold on input
|
adamstark@100
|
394 adaptiveThreshold (resampledOnsetDF);
|
adamstark@46
|
395
|
adamstark@46
|
396 // calculate auto-correlation function of detection function
|
adamstark@100
|
397 calculateBalancedACF (resampledOnsetDF);
|
adamstark@46
|
398
|
adamstark@46
|
399 // calculate output of comb filterbank
|
adamstark@57
|
400 calculateOutputOfCombFilterBank();
|
adamstark@46
|
401
|
adamstark@46
|
402 // adaptive threshold on rcf
|
adamstark@100
|
403 adaptiveThreshold (combFilterBankOutput);
|
adamstark@46
|
404
|
adamstark@59
|
405 // calculate tempo observation vector from beat period observation vector
|
adamstark@100
|
406 for (int i = 0; i < 41; i++)
|
adamstark@46
|
407 {
|
adamstark@100
|
408 int tempoIndex1 = (int) round (tempoToLagFactor / ((double) ((2*i)+80)));
|
adamstark@100
|
409 int tempoIndex2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160)));
|
adamstark@100
|
410 tempoObservationVector[i] = combFilterBankOutput[tempoIndex1 - 1] + combFilterBankOutput[tempoIndex2 - 1];
|
adamstark@46
|
411 }
|
adamstark@46
|
412
|
adamstark@46
|
413 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
|
adamstark@58
|
414 if (tempoFixed)
|
adamstark@46
|
415 {
|
adamstark@100
|
416 for (int k = 0; k < 41; k++)
|
adamstark@100
|
417 prevDelta[k] = prevDeltaFixed[k];
|
adamstark@46
|
418 }
|
adamstark@46
|
419
|
adamstark@100
|
420 for (int j = 0; j < 41; j++)
|
adamstark@46
|
421 {
|
adamstark@100
|
422 double maxValue = -1;
|
adamstark@100
|
423
|
adamstark@100
|
424 for (int i = 0; i < 41; i++)
|
adamstark@46
|
425 {
|
adamstark@100
|
426 double currentValue = prevDelta[i] * tempoTransitionMatrix[i][j];
|
adamstark@46
|
427
|
adamstark@100
|
428 if (currentValue > maxValue)
|
adamstark@100
|
429 maxValue = currentValue;
|
adamstark@46
|
430 }
|
adamstark@46
|
431
|
adamstark@100
|
432 delta[j] = maxValue * tempoObservationVector[j];
|
adamstark@46
|
433 }
|
adamstark@46
|
434
|
adamstark@100
|
435 normaliseVector (delta);
|
adamstark@46
|
436
|
adamstark@100
|
437 double maxIndex = -1;
|
adamstark@100
|
438 double maxValue = -1;
|
adamstark@46
|
439
|
adamstark@100
|
440 for (int j = 0; j < 41; j++)
|
adamstark@46
|
441 {
|
adamstark@100
|
442 if (delta[j] > maxValue)
|
adamstark@46
|
443 {
|
adamstark@100
|
444 maxValue = delta[j];
|
adamstark@100
|
445 maxIndex = j;
|
adamstark@46
|
446 }
|
adamstark@46
|
447
|
adamstark@58
|
448 prevDelta[j] = delta[j];
|
adamstark@46
|
449 }
|
adamstark@46
|
450
|
adamstark@100
|
451 beatPeriod = round ((60.0 * 44100.0) / (((2 * maxIndex) + 80) * ((double) hopSize)));
|
adamstark@46
|
452
|
adamstark@57
|
453 if (beatPeriod > 0)
|
adamstark@100
|
454 estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod);
|
adamstark@46
|
455 }
|
adamstark@46
|
456
|
adamstark@51
|
457 //=======================================================================
|
adamstark@100
|
458 void BTrack::adaptiveThreshold (std::vector<double>& x)
|
adamstark@46
|
459 {
|
adamstark@100
|
460 int N = static_cast<int> (x.size());
|
adamstark@100
|
461 double threshold[N];
|
adamstark@46
|
462
|
adamstark@46
|
463 int p_post = 7;
|
adamstark@46
|
464 int p_pre = 8;
|
adamstark@46
|
465
|
adamstark@100
|
466 int t = std::min (N, p_post); // what is smaller, p_post or df size. This is to avoid accessing outside of arrays
|
adamstark@46
|
467
|
adamstark@46
|
468 // find threshold for first 't' samples, where a full average cannot be computed yet
|
adamstark@100
|
469 for (int i = 0; i <= t; i++)
|
adamstark@46
|
470 {
|
adamstark@100
|
471 int k = std::min ((i + p_pre), N);
|
adamstark@100
|
472 threshold[i] = calculateMeanOfVector (x, 1, k);
|
adamstark@46
|
473 }
|
adamstark@100
|
474
|
adamstark@46
|
475 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
|
adamstark@100
|
476 for (int i = t + 1; i < N - p_post; i++)
|
adamstark@46
|
477 {
|
adamstark@100
|
478 threshold[i] = calculateMeanOfVector (x, i - p_pre, i + p_post);
|
adamstark@46
|
479 }
|
adamstark@100
|
480
|
adamstark@46
|
481 // for last few samples calculate threshold, again, not enough samples to do as above
|
adamstark@100
|
482 for (int i = N - p_post; i < N; i++)
|
adamstark@46
|
483 {
|
adamstark@100
|
484 int k = std::max ((i - p_post), 1);
|
adamstark@100
|
485 threshold[i] = calculateMeanOfVector (x, k, N);
|
adamstark@46
|
486 }
|
adamstark@46
|
487
|
adamstark@46
|
488 // subtract the threshold from the detection function and check that it is not less than 0
|
adamstark@100
|
489 for (int i = 0; i < N; i++)
|
adamstark@46
|
490 {
|
adamstark@100
|
491 x[i] = x[i] - threshold[i];
|
adamstark@100
|
492
|
adamstark@46
|
493 if (x[i] < 0)
|
adamstark@100
|
494 x[i] = 0;
|
adamstark@46
|
495 }
|
adamstark@46
|
496 }
|
adamstark@46
|
497
|
adamstark@51
|
498 //=======================================================================
|
adamstark@57
|
499 void BTrack::calculateOutputOfCombFilterBank()
|
adamstark@46
|
500 {
|
adamstark@100
|
501 std::fill (combFilterBankOutput.begin(), combFilterBankOutput.end(), 0.0);
|
adamstark@100
|
502 int numCombElements = 4;
|
adamstark@46
|
503
|
adamstark@91
|
504 for (int i = 2; i <= 127; i++) // max beat period
|
adamstark@46
|
505 {
|
adamstark@100
|
506 for (int a = 1; a <= numCombElements; a++) // number of comb elements
|
adamstark@46
|
507 {
|
adamstark@100
|
508 for (int b = 1 - a; b <= a - 1; b++) // general state using normalisation of comb elements
|
adamstark@46
|
509 {
|
adamstark@58
|
510 combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row
|
adamstark@46
|
511 }
|
adamstark@46
|
512 }
|
adamstark@46
|
513 }
|
adamstark@46
|
514 }
|
adamstark@46
|
515
|
adamstark@51
|
516 //=======================================================================
|
adamstark@100
|
517 void BTrack::calculateBalancedACF (std::vector<double>& onsetDetectionFunction)
|
adamstark@46
|
518 {
|
adamstark@88
|
519 int onsetDetectionFunctionLength = 512;
|
adamstark@88
|
520
|
adamstark@93
|
521 #ifdef USE_FFTW
|
adamstark@88
|
522 // copy into complex array and zero pad
|
adamstark@88
|
523 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@88
|
524 {
|
adamstark@88
|
525 if (i < onsetDetectionFunctionLength)
|
adamstark@88
|
526 {
|
adamstark@88
|
527 complexIn[i][0] = onsetDetectionFunction[i];
|
adamstark@88
|
528 complexIn[i][1] = 0.0;
|
adamstark@88
|
529 }
|
adamstark@88
|
530 else
|
adamstark@88
|
531 {
|
adamstark@88
|
532 complexIn[i][0] = 0.0;
|
adamstark@88
|
533 complexIn[i][1] = 0.0;
|
adamstark@88
|
534 }
|
adamstark@88
|
535 }
|
adamstark@88
|
536
|
adamstark@88
|
537 // perform the fft
|
adamstark@91
|
538 fftw_execute (acfForwardFFT);
|
adamstark@88
|
539
|
adamstark@88
|
540 // multiply by complex conjugate
|
adamstark@88
|
541 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@88
|
542 {
|
adamstark@88
|
543 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
|
adamstark@88
|
544 complexOut[i][1] = 0.0;
|
adamstark@88
|
545 }
|
adamstark@88
|
546
|
adamstark@88
|
547 // perform the ifft
|
adamstark@91
|
548 fftw_execute (acfBackwardFFT);
|
adamstark@88
|
549
|
adamstark@93
|
550 #endif
|
adamstark@93
|
551
|
adamstark@93
|
552 #ifdef USE_KISS_FFT
|
adamstark@93
|
553 // copy into complex array and zero pad
|
adamstark@93
|
554 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@93
|
555 {
|
adamstark@93
|
556 if (i < onsetDetectionFunctionLength)
|
adamstark@93
|
557 {
|
adamstark@93
|
558 fftIn[i].r = onsetDetectionFunction[i];
|
adamstark@93
|
559 fftIn[i].i = 0.0;
|
adamstark@93
|
560 }
|
adamstark@93
|
561 else
|
adamstark@93
|
562 {
|
adamstark@93
|
563 fftIn[i].r = 0.0;
|
adamstark@93
|
564 fftIn[i].i = 0.0;
|
adamstark@93
|
565 }
|
adamstark@93
|
566 }
|
adamstark@93
|
567
|
adamstark@93
|
568 // execute kiss fft
|
adamstark@93
|
569 kiss_fft (cfgForwards, fftIn, fftOut);
|
adamstark@93
|
570
|
adamstark@93
|
571 // multiply by complex conjugate
|
adamstark@93
|
572 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@93
|
573 {
|
adamstark@93
|
574 fftOut[i].r = fftOut[i].r * fftOut[i].r + fftOut[i].i * fftOut[i].i;
|
adamstark@93
|
575 fftOut[i].i = 0.0;
|
adamstark@93
|
576 }
|
adamstark@93
|
577
|
adamstark@93
|
578 // perform the ifft
|
adamstark@93
|
579 kiss_fft (cfgBackwards, fftOut, fftIn);
|
adamstark@93
|
580
|
adamstark@93
|
581 #endif
|
adamstark@88
|
582
|
adamstark@88
|
583 double lag = 512;
|
adamstark@88
|
584
|
adamstark@91
|
585 for (int i = 0; i < 512; i++)
|
adamstark@88
|
586 {
|
adamstark@93
|
587 #ifdef USE_FFTW
|
adamstark@88
|
588 // calculate absolute value of result
|
adamstark@91
|
589 double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
|
adamstark@93
|
590 #endif
|
adamstark@88
|
591
|
adamstark@93
|
592 #ifdef USE_KISS_FFT
|
adamstark@93
|
593 // calculate absolute value of result
|
adamstark@93
|
594 double absValue = sqrt (fftIn[i].r * fftIn[i].r + fftIn[i].i * fftIn[i].i);
|
adamstark@93
|
595 #endif
|
adamstark@88
|
596 // divide by inverse lad to deal with scale bias towards small lags
|
adamstark@88
|
597 acf[i] = absValue / lag;
|
adamstark@88
|
598
|
adamstark@88
|
599 // this division by 1024 is technically unnecessary but it ensures the algorithm produces
|
adamstark@88
|
600 // exactly the same ACF output as the old time domain implementation. The time difference is
|
adamstark@88
|
601 // minimal so I decided to keep it
|
adamstark@88
|
602 acf[i] = acf[i] / 1024.;
|
adamstark@88
|
603
|
adamstark@88
|
604 lag = lag - 1.;
|
adamstark@88
|
605 }
|
adamstark@46
|
606 }
|
adamstark@46
|
607
|
adamstark@51
|
608 //=======================================================================
|
adamstark@100
|
609 double BTrack::calculateMeanOfVector (std::vector<double>& vector, int startIndex, int endIndex)
|
adamstark@46
|
610 {
|
adamstark@97
|
611 int length = endIndex - startIndex;
|
adamstark@100
|
612 double sum = std::accumulate (vector.begin() + startIndex, vector.begin() + endIndex, 0.0);
|
adamstark@47
|
613
|
adamstark@47
|
614 if (length > 0)
|
adamstark@97
|
615 return sum / static_cast<double> (length); // average and return
|
adamstark@47
|
616 else
|
adamstark@47
|
617 return 0;
|
adamstark@46
|
618 }
|
adamstark@46
|
619
|
adamstark@51
|
620 //=======================================================================
|
adamstark@100
|
621 void BTrack::normaliseVector (std::vector<double>& vector)
|
adamstark@46
|
622 {
|
adamstark@100
|
623 double sum = std::accumulate (vector.begin(), vector.end(), 0.0);
|
adamstark@46
|
624
|
adamstark@46
|
625 if (sum > 0)
|
adamstark@97
|
626 {
|
adamstark@100
|
627 for (int i = 0; i < vector.size(); i++)
|
adamstark@100
|
628 vector[i] = vector[i] / sum;
|
adamstark@97
|
629 }
|
adamstark@46
|
630 }
|
adamstark@46
|
631
|
adamstark@51
|
632 //=======================================================================
|
adamstark@100
|
633 void BTrack::updateCumulativeScore (double onsetDetectionFunctionSample)
|
adamstark@98
|
634 {
|
adamstark@100
|
635 int windowStart = onsetDFBufferSize - round (2. * beatPeriod);
|
adamstark@100
|
636 int windowEnd = onsetDFBufferSize - round (beatPeriod / 2.);
|
adamstark@100
|
637 int windowSize = windowEnd - windowStart + 1;
|
adamstark@46
|
638
|
adamstark@98
|
639 double w1[windowSize];
|
adamstark@97
|
640 double v = -2. * beatPeriod;
|
adamstark@98
|
641 double weightedCumulativeScore;
|
adamstark@46
|
642
|
adamstark@46
|
643 // create window
|
adamstark@98
|
644 for (int i = 0; i < windowSize; i++)
|
adamstark@46
|
645 {
|
adamstark@98
|
646 double a = tightness * log (-v / beatPeriod);
|
adamstark@98
|
647 w1[i] = exp ((-1. * a * a) / 2.);
|
adamstark@98
|
648 v = v + 1.;
|
adamstark@46
|
649 }
|
adamstark@46
|
650
|
adamstark@46
|
651 // calculate new cumulative score value
|
adamstark@98
|
652 double maxValue = 0;
|
adamstark@46
|
653 int n = 0;
|
adamstark@100
|
654 for (int i = windowStart; i <= windowEnd; i++)
|
adamstark@46
|
655 {
|
adamstark@98
|
656 weightedCumulativeScore = cumulativeScore[i] * w1[n];
|
adamstark@46
|
657
|
adamstark@98
|
658 if (weightedCumulativeScore > maxValue)
|
adamstark@98
|
659 maxValue = weightedCumulativeScore;
|
adamstark@98
|
660
|
adamstark@46
|
661 n++;
|
adamstark@46
|
662 }
|
adamstark@46
|
663
|
adamstark@100
|
664 latestCumulativeScoreValue = ((1 - alpha) * onsetDetectionFunctionSample) + (alpha * maxValue);
|
adamstark@91
|
665 cumulativeScore.addSampleToEnd (latestCumulativeScoreValue);
|
adamstark@46
|
666 }
|
adamstark@46
|
667
|
adamstark@51
|
668 //=======================================================================
|
adamstark@57
|
669 void BTrack::predictBeat()
|
adamstark@46
|
670 {
|
adamstark@58
|
671 int windowSize = (int) beatPeriod;
|
adamstark@58
|
672 double futureCumulativeScore[onsetDFBufferSize + windowSize];
|
adamstark@58
|
673 double w2[windowSize];
|
adamstark@93
|
674
|
adamstark@46
|
675 // copy cumscore to first part of fcumscore
|
adamstark@58
|
676 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@46
|
677 {
|
adamstark@58
|
678 futureCumulativeScore[i] = cumulativeScore[i];
|
adamstark@46
|
679 }
|
adamstark@46
|
680
|
adamstark@46
|
681 // create future window
|
adamstark@54
|
682 double v = 1;
|
adamstark@91
|
683 for (int i = 0; i < windowSize; i++)
|
adamstark@46
|
684 {
|
adamstark@57
|
685 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
|
adamstark@46
|
686 v++;
|
adamstark@46
|
687 }
|
adamstark@46
|
688
|
adamstark@46
|
689 // create past window
|
adamstark@57
|
690 v = -2*beatPeriod;
|
adamstark@58
|
691 int start = onsetDFBufferSize - round(2*beatPeriod);
|
adamstark@58
|
692 int end = onsetDFBufferSize - round(beatPeriod/2);
|
adamstark@46
|
693 int pastwinsize = end-start+1;
|
adamstark@54
|
694 double w1[pastwinsize];
|
adamstark@46
|
695
|
adamstark@46
|
696 for (int i = 0;i < pastwinsize;i++)
|
adamstark@46
|
697 {
|
adamstark@57
|
698 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
|
adamstark@46
|
699 v = v+1;
|
adamstark@46
|
700 }
|
adamstark@46
|
701
|
adamstark@46
|
702 // calculate future cumulative score
|
adamstark@54
|
703 double max;
|
adamstark@46
|
704 int n;
|
adamstark@54
|
705 double wcumscore;
|
adamstark@91
|
706 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++)
|
adamstark@46
|
707 {
|
adamstark@91
|
708 start = i - round (2*beatPeriod);
|
adamstark@91
|
709 end = i - round (beatPeriod/2);
|
adamstark@46
|
710
|
adamstark@46
|
711 max = 0;
|
adamstark@46
|
712 n = 0;
|
adamstark@46
|
713 for (int k=start;k <= end;k++)
|
adamstark@46
|
714 {
|
adamstark@58
|
715 wcumscore = futureCumulativeScore[k]*w1[n];
|
adamstark@46
|
716
|
adamstark@46
|
717 if (wcumscore > max)
|
adamstark@46
|
718 {
|
adamstark@46
|
719 max = wcumscore;
|
adamstark@46
|
720 }
|
adamstark@46
|
721 n++;
|
adamstark@46
|
722 }
|
adamstark@46
|
723
|
adamstark@58
|
724 futureCumulativeScore[i] = max;
|
adamstark@46
|
725 }
|
adamstark@46
|
726
|
adamstark@46
|
727 // predict beat
|
adamstark@46
|
728 max = 0;
|
adamstark@46
|
729 n = 0;
|
adamstark@46
|
730
|
adamstark@91
|
731 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++)
|
adamstark@46
|
732 {
|
adamstark@58
|
733 wcumscore = futureCumulativeScore[i]*w2[n];
|
adamstark@46
|
734
|
adamstark@46
|
735 if (wcumscore > max)
|
adamstark@46
|
736 {
|
adamstark@46
|
737 max = wcumscore;
|
adamstark@58
|
738 beatCounter = n;
|
adamstark@46
|
739 }
|
adamstark@46
|
740
|
adamstark@46
|
741 n++;
|
adamstark@46
|
742 }
|
adamstark@46
|
743
|
adamstark@46
|
744 // set next prediction time
|
adamstark@91
|
745 m0 = beatCounter + round (beatPeriod / 2);
|
adamstark@97
|
746 }
|