adamstark@46
|
1 //=======================================================================
|
adamstark@46
|
2 /** @file BTrack.cpp
|
adamstark@47
|
3 * @brief BTrack - a real-time beat tracker
|
adamstark@46
|
4 * @author Adam Stark
|
adamstark@46
|
5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
|
adamstark@46
|
6 *
|
adamstark@46
|
7 * This program is free software: you can redistribute it and/or modify
|
adamstark@46
|
8 * it under the terms of the GNU General Public License as published by
|
adamstark@46
|
9 * the Free Software Foundation, either version 3 of the License, or
|
adamstark@46
|
10 * (at your option) any later version.
|
adamstark@46
|
11 *
|
adamstark@46
|
12 * This program is distributed in the hope that it will be useful,
|
adamstark@46
|
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
adamstark@46
|
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
adamstark@46
|
15 * GNU General Public License for more details.
|
adamstark@46
|
16 *
|
adamstark@46
|
17 * You should have received a copy of the GNU General Public License
|
adamstark@46
|
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
adamstark@46
|
19 */
|
adamstark@46
|
20 //=======================================================================
|
adamstark@46
|
21
|
adamstark@46
|
22 #include <cmath>
|
adamstark@52
|
23 #include <algorithm>
|
adamstark@97
|
24 #include <numeric>
|
adamstark@46
|
25 #include "BTrack.h"
|
adamstark@46
|
26 #include "samplerate.h"
|
adamstark@89
|
27 #include <iostream>
|
adamstark@46
|
28
|
adamstark@55
|
29 //=======================================================================
|
adamstark@91
|
30 BTrack::BTrack()
|
adamstark@91
|
31 : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@55
|
32 {
|
adamstark@93
|
33 initialise (512, 1024);
|
adamstark@55
|
34 }
|
adamstark@46
|
35
|
adamstark@51
|
36 //=======================================================================
|
adamstark@91
|
37 BTrack::BTrack (int hopSize_)
|
adamstark@97
|
38 : odf (hopSize_, 2 * hopSize_, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@46
|
39 {
|
adamstark@97
|
40 initialise (hopSize_, 2 * hopSize_);
|
adamstark@55
|
41 }
|
adamstark@55
|
42
|
adamstark@55
|
43 //=======================================================================
|
adamstark@91
|
44 BTrack::BTrack (int hopSize_, int frameSize_)
|
adamstark@91
|
45 : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow)
|
adamstark@55
|
46 {
|
adamstark@91
|
47 initialise (hopSize_, frameSize_);
|
adamstark@55
|
48 }
|
adamstark@55
|
49
|
adamstark@55
|
50 //=======================================================================
|
adamstark@88
|
51 BTrack::~BTrack()
|
adamstark@88
|
52 {
|
adamstark@93
|
53 #ifdef USE_FFTW
|
adamstark@88
|
54 // destroy fft plan
|
adamstark@91
|
55 fftw_destroy_plan (acfForwardFFT);
|
adamstark@91
|
56 fftw_destroy_plan (acfBackwardFFT);
|
adamstark@91
|
57 fftw_free (complexIn);
|
adamstark@91
|
58 fftw_free (complexOut);
|
adamstark@93
|
59 #endif
|
adamstark@93
|
60
|
adamstark@93
|
61 #ifdef USE_KISS_FFT
|
adamstark@93
|
62 free (cfgForwards);
|
adamstark@93
|
63 free (cfgBackwards);
|
adamstark@93
|
64 delete [] fftIn;
|
adamstark@93
|
65 delete [] fftOut;
|
adamstark@93
|
66 #endif
|
adamstark@88
|
67 }
|
adamstark@88
|
68
|
adamstark@88
|
69 //=======================================================================
|
adamstark@91
|
70 double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs)
|
adamstark@55
|
71 {
|
adamstark@55
|
72 double hop = (double) hopSize;
|
adamstark@55
|
73 double samplingFrequency = (double) fs;
|
adamstark@55
|
74 double frameNum = (double) frameNumber;
|
adamstark@55
|
75
|
adamstark@55
|
76 return ((hop / samplingFrequency) * frameNum);
|
adamstark@55
|
77 }
|
adamstark@55
|
78
|
adamstark@55
|
79 //=======================================================================
|
adamstark@91
|
80 double BTrack::getBeatTimeInSeconds (int frameNumber, int hopSize, int fs)
|
adamstark@55
|
81 {
|
adamstark@55
|
82 long frameNum = (long) frameNumber;
|
adamstark@55
|
83
|
adamstark@91
|
84 return getBeatTimeInSeconds (frameNum, hopSize, fs);
|
adamstark@55
|
85 }
|
adamstark@55
|
86
|
adamstark@55
|
87 //=======================================================================
|
adamstark@91
|
88 void BTrack::initialise (int hopSize_, int frameSize_)
|
adamstark@55
|
89 {
|
adamstark@97
|
90 // set vector sizes
|
adamstark@97
|
91 resampledOnsetDF.resize (512);
|
adamstark@97
|
92 acf.resize (512);
|
adamstark@97
|
93 weightingVector.resize (128);
|
adamstark@97
|
94 combFilterBankOutput.resize (128);
|
adamstark@97
|
95 tempoObservationVector.resize (41);
|
adamstark@97
|
96 delta.resize (41);
|
adamstark@97
|
97 prevDelta.resize (41);
|
adamstark@97
|
98 prevDeltaFixed.resize (41);
|
adamstark@97
|
99
|
adamstark@98
|
100 double rayleighParameter = 43;
|
adamstark@54
|
101 double pi = 3.14159265;
|
adamstark@46
|
102
|
adamstark@46
|
103
|
adamstark@46
|
104 // initialise parameters
|
adamstark@46
|
105 tightness = 5;
|
adamstark@46
|
106 alpha = 0.9;
|
adamstark@46
|
107 tempo = 120;
|
adamstark@58
|
108 estimatedTempo = 120.0;
|
adamstark@100
|
109 tempoToLagFactor = 60. * 44100. / 512.;
|
adamstark@46
|
110
|
adamstark@46
|
111 m0 = 10;
|
adamstark@58
|
112 beatCounter = -1;
|
adamstark@46
|
113
|
adamstark@57
|
114 beatDueInFrame = false;
|
adamstark@46
|
115
|
adamstark@58
|
116
|
adamstark@46
|
117 // create rayleigh weighting vector
|
adamstark@91
|
118 for (int n = 0; n < 128; n++)
|
adamstark@98
|
119 weightingVector[n] = ((double) n / pow (rayleighParameter, 2)) * exp((-1 * pow((double) - n, 2)) / (2 * pow (rayleighParameter, 2)));
|
adamstark@46
|
120
|
adamstark@100
|
121 // initialise prevDelta
|
adamstark@97
|
122 std::fill (prevDelta.begin(), prevDelta.end(), 1);
|
adamstark@97
|
123
|
adamstark@54
|
124 double t_mu = 41/2;
|
adamstark@54
|
125 double m_sig;
|
adamstark@54
|
126 double x;
|
adamstark@46
|
127 // create tempo transition matrix
|
adamstark@46
|
128 m_sig = 41/8;
|
adamstark@46
|
129 for (int i = 0;i < 41;i++)
|
adamstark@46
|
130 {
|
adamstark@46
|
131 for (int j = 0;j < 41;j++)
|
adamstark@46
|
132 {
|
adamstark@46
|
133 x = j+1;
|
adamstark@46
|
134 t_mu = i+1;
|
adamstark@58
|
135 tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
|
adamstark@46
|
136 }
|
adamstark@55
|
137 }
|
adamstark@46
|
138
|
adamstark@46
|
139 // tempo is not fixed
|
adamstark@58
|
140 tempoFixed = false;
|
adamstark@58
|
141
|
adamstark@58
|
142 // initialise latest cumulative score value
|
adamstark@58
|
143 // in case it is requested before any processing takes place
|
adamstark@58
|
144 latestCumulativeScoreValue = 0;
|
adamstark@55
|
145
|
adamstark@55
|
146 // initialise algorithm given the hopsize
|
adamstark@100
|
147 setHopSize (hopSize_);
|
adamstark@88
|
148
|
adamstark@88
|
149
|
adamstark@88
|
150 // Set up FFT for calculating the auto-correlation function
|
adamstark@88
|
151 FFTLengthForACFCalculation = 1024;
|
adamstark@88
|
152
|
adamstark@93
|
153 #ifdef USE_FFTW
|
adamstark@91
|
154 complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
|
adamstark@91
|
155 complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
|
adamstark@88
|
156
|
adamstark@91
|
157 acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
|
adamstark@91
|
158 acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
|
adamstark@93
|
159 #endif
|
adamstark@93
|
160
|
adamstark@93
|
161 #ifdef USE_KISS_FFT
|
adamstark@93
|
162 fftIn = new kiss_fft_cpx[FFTLengthForACFCalculation];
|
adamstark@93
|
163 fftOut = new kiss_fft_cpx[FFTLengthForACFCalculation];
|
adamstark@93
|
164 cfgForwards = kiss_fft_alloc (FFTLengthForACFCalculation, 0, 0, 0);
|
adamstark@93
|
165 cfgBackwards = kiss_fft_alloc (FFTLengthForACFCalculation, 1, 0, 0);
|
adamstark@93
|
166 #endif
|
adamstark@46
|
167 }
|
adamstark@46
|
168
|
adamstark@51
|
169 //=======================================================================
|
adamstark@91
|
170 void BTrack::setHopSize (int hopSize_)
|
adamstark@46
|
171 {
|
adamstark@57
|
172 hopSize = hopSize_;
|
adamstark@97
|
173 onsetDFBufferSize = (512 * 512) / hopSize; // calculate df buffer size
|
adamstark@46
|
174
|
adamstark@57
|
175 beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
|
adamstark@63
|
176
|
adamstark@63
|
177 // set size of onset detection function buffer
|
adamstark@91
|
178 onsetDF.resize (onsetDFBufferSize);
|
adamstark@63
|
179
|
adamstark@63
|
180 // set size of cumulative score buffer
|
adamstark@91
|
181 cumulativeScore.resize (onsetDFBufferSize);
|
adamstark@46
|
182
|
adamstark@46
|
183 // initialise df_buffer to zeros
|
adamstark@91
|
184 for (int i = 0; i < onsetDFBufferSize; i++)
|
adamstark@46
|
185 {
|
adamstark@58
|
186 onsetDF[i] = 0;
|
adamstark@58
|
187 cumulativeScore[i] = 0;
|
adamstark@46
|
188
|
adamstark@57
|
189 if ((i % ((int) round(beatPeriod))) == 0)
|
adamstark@46
|
190 {
|
adamstark@58
|
191 onsetDF[i] = 1;
|
adamstark@46
|
192 }
|
adamstark@46
|
193 }
|
adamstark@46
|
194 }
|
adamstark@46
|
195
|
adamstark@51
|
196 //=======================================================================
|
adamstark@91
|
197 void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_)
|
adamstark@65
|
198 {
|
adamstark@65
|
199 // update the onset detection function object
|
adamstark@91
|
200 odf.initialise (hopSize_, frameSize_);
|
adamstark@65
|
201
|
adamstark@65
|
202 // update the hop size being used by the beat tracker
|
adamstark@91
|
203 setHopSize (hopSize_);
|
adamstark@65
|
204 }
|
adamstark@65
|
205
|
adamstark@65
|
206 //=======================================================================
|
adamstark@57
|
207 bool BTrack::beatDueInCurrentFrame()
|
adamstark@57
|
208 {
|
adamstark@57
|
209 return beatDueInFrame;
|
adamstark@57
|
210 }
|
adamstark@57
|
211
|
adamstark@57
|
212 //=======================================================================
|
adamstark@78
|
213 double BTrack::getCurrentTempoEstimate()
|
adamstark@78
|
214 {
|
adamstark@78
|
215 return estimatedTempo;
|
adamstark@78
|
216 }
|
adamstark@78
|
217
|
adamstark@78
|
218 //=======================================================================
|
adamstark@57
|
219 int BTrack::getHopSize()
|
adamstark@57
|
220 {
|
adamstark@57
|
221 return hopSize;
|
adamstark@57
|
222 }
|
adamstark@57
|
223
|
adamstark@57
|
224 //=======================================================================
|
adamstark@58
|
225 double BTrack::getLatestCumulativeScoreValue()
|
adamstark@58
|
226 {
|
adamstark@58
|
227 return latestCumulativeScoreValue;
|
adamstark@58
|
228 }
|
adamstark@58
|
229
|
adamstark@58
|
230 //=======================================================================
|
adamstark@91
|
231 void BTrack::processAudioFrame (double* frame)
|
adamstark@55
|
232 {
|
adamstark@55
|
233 // calculate the onset detection function sample for the frame
|
adamstark@91
|
234 double sample = odf.calculateOnsetDetectionFunctionSample (frame);
|
adamstark@55
|
235
|
adamstark@55
|
236 // process the new onset detection function sample in the beat tracking algorithm
|
adamstark@91
|
237 processOnsetDetectionFunctionSample (sample);
|
adamstark@55
|
238 }
|
adamstark@55
|
239
|
adamstark@55
|
240 //=======================================================================
|
adamstark@91
|
241 void BTrack::processOnsetDetectionFunctionSample (double newSample)
|
adamstark@56
|
242 {
|
adamstark@56
|
243 // we need to ensure that the onset
|
adamstark@56
|
244 // detection function sample is positive
|
adamstark@91
|
245 newSample = fabs (newSample);
|
adamstark@56
|
246
|
adamstark@56
|
247 // add a tiny constant to the sample to stop it from ever going
|
adamstark@56
|
248 // to zero. this is to avoid problems further down the line
|
adamstark@56
|
249 newSample = newSample + 0.0001;
|
adamstark@56
|
250
|
adamstark@46
|
251 m0--;
|
adamstark@58
|
252 beatCounter--;
|
adamstark@57
|
253 beatDueInFrame = false;
|
adamstark@90
|
254
|
adamstark@46
|
255 // add new sample at the end
|
adamstark@91
|
256 onsetDF.addSampleToEnd (newSample);
|
adamstark@46
|
257
|
adamstark@46
|
258 // update cumulative score
|
adamstark@91
|
259 updateCumulativeScore (newSample);
|
adamstark@46
|
260
|
adamstark@97
|
261 // if we are halfway between beats, predict a beat
|
adamstark@46
|
262 if (m0 == 0)
|
adamstark@97
|
263 predictBeat();
|
adamstark@46
|
264
|
adamstark@46
|
265 // if we are at a beat
|
adamstark@58
|
266 if (beatCounter == 0)
|
adamstark@46
|
267 {
|
adamstark@57
|
268 beatDueInFrame = true; // indicate a beat should be output
|
adamstark@46
|
269
|
adamstark@46
|
270 // recalculate the tempo
|
adamstark@57
|
271 resampleOnsetDetectionFunction();
|
adamstark@57
|
272 calculateTempo();
|
adamstark@46
|
273 }
|
adamstark@46
|
274 }
|
adamstark@46
|
275
|
adamstark@51
|
276 //=======================================================================
|
adamstark@91
|
277 void BTrack::setTempo (double tempo)
|
adamstark@97
|
278 {
|
adamstark@46
|
279 /////////// TEMPO INDICATION RESET //////////////////
|
adamstark@46
|
280
|
adamstark@46
|
281 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
282 while (tempo > 160)
|
adamstark@97
|
283 tempo = tempo / 2;
|
adamstark@46
|
284
|
adamstark@46
|
285 while (tempo < 80)
|
adamstark@97
|
286 tempo = tempo * 2;
|
adamstark@46
|
287
|
adamstark@46
|
288 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@46
|
289 int tempo_index = (int) round((tempo - 80)/2);
|
adamstark@46
|
290
|
adamstark@97
|
291 // now set previous tempo observations to zero and set desired tempo index to 1
|
adamstark@97
|
292 std::fill (prevDelta.begin(), prevDelta.end(), 0);
|
adamstark@58
|
293 prevDelta[tempo_index] = 1;
|
adamstark@46
|
294
|
adamstark@46
|
295 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
|
adamstark@46
|
296
|
adamstark@46
|
297 // calculate new beat period
|
adamstark@97
|
298 int newBeatPeriod = (int) round (60 / ((((double) hopSize) / 44100) * tempo));
|
adamstark@46
|
299
|
adamstark@97
|
300 int k = 1;
|
adamstark@97
|
301
|
adamstark@97
|
302 // initialise onset detection function with delta functions spaced
|
adamstark@97
|
303 // at the new beat period
|
adamstark@97
|
304 for (int i = onsetDFBufferSize - 1; i >= 0; i--)
|
adamstark@46
|
305 {
|
adamstark@97
|
306 if (k == 1)
|
adamstark@46
|
307 {
|
adamstark@58
|
308 cumulativeScore[i] = 150;
|
adamstark@58
|
309 onsetDF[i] = 150;
|
adamstark@46
|
310 }
|
adamstark@46
|
311 else
|
adamstark@46
|
312 {
|
adamstark@58
|
313 cumulativeScore[i] = 10;
|
adamstark@58
|
314 onsetDF[i] = 10;
|
adamstark@46
|
315 }
|
adamstark@46
|
316
|
adamstark@97
|
317 k++;
|
adamstark@46
|
318
|
adamstark@97
|
319 if (k > newBeatPeriod)
|
adamstark@46
|
320 {
|
adamstark@97
|
321 k = 1;
|
adamstark@46
|
322 }
|
adamstark@46
|
323 }
|
adamstark@46
|
324
|
adamstark@46
|
325 /////////// INDICATE THAT THIS IS A BEAT //////////////////
|
adamstark@46
|
326
|
adamstark@46
|
327 // beat is now
|
adamstark@58
|
328 beatCounter = 0;
|
adamstark@46
|
329
|
adamstark@46
|
330 // offbeat is half of new beat period away
|
adamstark@97
|
331 m0 = (int) round (((double) newBeatPeriod) / 2);
|
adamstark@46
|
332 }
|
adamstark@46
|
333
|
adamstark@51
|
334 //=======================================================================
|
adamstark@91
|
335 void BTrack::fixTempo (double tempo)
|
adamstark@46
|
336 {
|
adamstark@46
|
337 // firstly make sure tempo is between 80 and 160 bpm..
|
adamstark@46
|
338 while (tempo > 160)
|
adamstark@100
|
339 tempo = tempo / 2;
|
adamstark@46
|
340
|
adamstark@46
|
341 while (tempo < 80)
|
adamstark@100
|
342 tempo = tempo * 2;
|
adamstark@46
|
343
|
adamstark@46
|
344 // convert tempo from bpm value to integer index of tempo probability
|
adamstark@100
|
345 int tempoIndex = (int) round((tempo - 80) / 2);
|
adamstark@46
|
346
|
adamstark@46
|
347 // now set previous fixed previous tempo observation values to zero
|
adamstark@46
|
348 for (int i=0;i < 41;i++)
|
adamstark@46
|
349 {
|
adamstark@58
|
350 prevDeltaFixed[i] = 0;
|
adamstark@46
|
351 }
|
adamstark@46
|
352
|
adamstark@46
|
353 // set desired tempo index to 1
|
adamstark@100
|
354 prevDeltaFixed[tempoIndex] = 1;
|
adamstark@46
|
355
|
adamstark@46
|
356 // set the tempo fix flag
|
adamstark@58
|
357 tempoFixed = true;
|
adamstark@46
|
358 }
|
adamstark@46
|
359
|
adamstark@51
|
360 //=======================================================================
|
adamstark@57
|
361 void BTrack::doNotFixTempo()
|
adamstark@46
|
362 {
|
adamstark@46
|
363 // set the tempo fix flag
|
adamstark@58
|
364 tempoFixed = false;
|
adamstark@46
|
365 }
|
adamstark@46
|
366
|
adamstark@51
|
367 //=======================================================================
|
adamstark@57
|
368 void BTrack::resampleOnsetDetectionFunction()
|
adamstark@46
|
369 {
|
adamstark@46
|
370 float output[512];
|
adamstark@58
|
371 float input[onsetDFBufferSize];
|
adamstark@54
|
372
|
adamstark@58
|
373 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@58
|
374 input[i] = (float) onsetDF[i];
|
adamstark@89
|
375
|
adamstark@97
|
376 double ratio = 512.0 / ((double) onsetDFBufferSize);
|
adamstark@97
|
377 int bufferLength = onsetDFBufferSize;
|
adamstark@97
|
378 int outputLength = 512;
|
adamstark@89
|
379
|
adamstark@97
|
380 SRC_DATA src_data;
|
adamstark@89
|
381 src_data.data_in = input;
|
adamstark@97
|
382 src_data.input_frames = bufferLength;
|
adamstark@97
|
383 src_data.src_ratio = ratio;
|
adamstark@89
|
384 src_data.data_out = output;
|
adamstark@97
|
385 src_data.output_frames = outputLength;
|
adamstark@89
|
386
|
adamstark@89
|
387 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
|
adamstark@89
|
388
|
adamstark@97
|
389 for (int i = 0; i < outputLength; i++)
|
adamstark@89
|
390 resampledOnsetDF[i] = (double) src_data.data_out[i];
|
adamstark@46
|
391 }
|
adamstark@46
|
392
|
adamstark@51
|
393 //=======================================================================
|
adamstark@57
|
394 void BTrack::calculateTempo()
|
adamstark@46
|
395 {
|
adamstark@46
|
396 // adaptive threshold on input
|
adamstark@100
|
397 adaptiveThreshold (resampledOnsetDF);
|
adamstark@46
|
398
|
adamstark@46
|
399 // calculate auto-correlation function of detection function
|
adamstark@100
|
400 calculateBalancedACF (resampledOnsetDF);
|
adamstark@46
|
401
|
adamstark@46
|
402 // calculate output of comb filterbank
|
adamstark@57
|
403 calculateOutputOfCombFilterBank();
|
adamstark@46
|
404
|
adamstark@46
|
405 // adaptive threshold on rcf
|
adamstark@100
|
406 adaptiveThreshold (combFilterBankOutput);
|
adamstark@46
|
407
|
adamstark@59
|
408 // calculate tempo observation vector from beat period observation vector
|
adamstark@100
|
409 for (int i = 0; i < 41; i++)
|
adamstark@46
|
410 {
|
adamstark@100
|
411 int tempoIndex1 = (int) round (tempoToLagFactor / ((double) ((2*i)+80)));
|
adamstark@100
|
412 int tempoIndex2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160)));
|
adamstark@100
|
413 tempoObservationVector[i] = combFilterBankOutput[tempoIndex1 - 1] + combFilterBankOutput[tempoIndex2 - 1];
|
adamstark@46
|
414 }
|
adamstark@46
|
415
|
adamstark@46
|
416 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
|
adamstark@58
|
417 if (tempoFixed)
|
adamstark@46
|
418 {
|
adamstark@100
|
419 for (int k = 0; k < 41; k++)
|
adamstark@100
|
420 prevDelta[k] = prevDeltaFixed[k];
|
adamstark@46
|
421 }
|
adamstark@46
|
422
|
adamstark@100
|
423 for (int j = 0; j < 41; j++)
|
adamstark@46
|
424 {
|
adamstark@100
|
425 double maxValue = -1;
|
adamstark@100
|
426
|
adamstark@100
|
427 for (int i = 0; i < 41; i++)
|
adamstark@46
|
428 {
|
adamstark@100
|
429 double currentValue = prevDelta[i] * tempoTransitionMatrix[i][j];
|
adamstark@46
|
430
|
adamstark@100
|
431 if (currentValue > maxValue)
|
adamstark@100
|
432 maxValue = currentValue;
|
adamstark@46
|
433 }
|
adamstark@46
|
434
|
adamstark@100
|
435 delta[j] = maxValue * tempoObservationVector[j];
|
adamstark@46
|
436 }
|
adamstark@46
|
437
|
adamstark@100
|
438 normaliseVector (delta);
|
adamstark@46
|
439
|
adamstark@100
|
440 double maxIndex = -1;
|
adamstark@100
|
441 double maxValue = -1;
|
adamstark@46
|
442
|
adamstark@100
|
443 for (int j = 0; j < 41; j++)
|
adamstark@46
|
444 {
|
adamstark@100
|
445 if (delta[j] > maxValue)
|
adamstark@46
|
446 {
|
adamstark@100
|
447 maxValue = delta[j];
|
adamstark@100
|
448 maxIndex = j;
|
adamstark@46
|
449 }
|
adamstark@46
|
450
|
adamstark@58
|
451 prevDelta[j] = delta[j];
|
adamstark@46
|
452 }
|
adamstark@46
|
453
|
adamstark@100
|
454 beatPeriod = round ((60.0 * 44100.0) / (((2 * maxIndex) + 80) * ((double) hopSize)));
|
adamstark@46
|
455
|
adamstark@57
|
456 if (beatPeriod > 0)
|
adamstark@100
|
457 estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod);
|
adamstark@46
|
458 }
|
adamstark@46
|
459
|
adamstark@51
|
460 //=======================================================================
|
adamstark@100
|
461 void BTrack::adaptiveThreshold (std::vector<double>& x)
|
adamstark@46
|
462 {
|
adamstark@100
|
463 int N = static_cast<int> (x.size());
|
adamstark@100
|
464 double threshold[N];
|
adamstark@46
|
465
|
adamstark@46
|
466 int p_post = 7;
|
adamstark@46
|
467 int p_pre = 8;
|
adamstark@46
|
468
|
adamstark@100
|
469 int t = std::min (N, p_post); // what is smaller, p_post or df size. This is to avoid accessing outside of arrays
|
adamstark@46
|
470
|
adamstark@46
|
471 // find threshold for first 't' samples, where a full average cannot be computed yet
|
adamstark@100
|
472 for (int i = 0; i <= t; i++)
|
adamstark@46
|
473 {
|
adamstark@100
|
474 int k = std::min ((i + p_pre), N);
|
adamstark@100
|
475 threshold[i] = calculateMeanOfVector (x, 1, k);
|
adamstark@46
|
476 }
|
adamstark@100
|
477
|
adamstark@46
|
478 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
|
adamstark@100
|
479 for (int i = t + 1; i < N - p_post; i++)
|
adamstark@46
|
480 {
|
adamstark@100
|
481 threshold[i] = calculateMeanOfVector (x, i - p_pre, i + p_post);
|
adamstark@46
|
482 }
|
adamstark@100
|
483
|
adamstark@46
|
484 // for last few samples calculate threshold, again, not enough samples to do as above
|
adamstark@100
|
485 for (int i = N - p_post; i < N; i++)
|
adamstark@46
|
486 {
|
adamstark@100
|
487 int k = std::max ((i - p_post), 1);
|
adamstark@100
|
488 threshold[i] = calculateMeanOfVector (x, k, N);
|
adamstark@46
|
489 }
|
adamstark@46
|
490
|
adamstark@46
|
491 // subtract the threshold from the detection function and check that it is not less than 0
|
adamstark@100
|
492 for (int i = 0; i < N; i++)
|
adamstark@46
|
493 {
|
adamstark@100
|
494 x[i] = x[i] - threshold[i];
|
adamstark@100
|
495
|
adamstark@46
|
496 if (x[i] < 0)
|
adamstark@100
|
497 x[i] = 0;
|
adamstark@46
|
498 }
|
adamstark@46
|
499 }
|
adamstark@46
|
500
|
adamstark@51
|
501 //=======================================================================
|
adamstark@57
|
502 void BTrack::calculateOutputOfCombFilterBank()
|
adamstark@46
|
503 {
|
adamstark@100
|
504 std::fill (combFilterBankOutput.begin(), combFilterBankOutput.end(), 0.0);
|
adamstark@100
|
505 int numCombElements = 4;
|
adamstark@46
|
506
|
adamstark@91
|
507 for (int i = 2; i <= 127; i++) // max beat period
|
adamstark@46
|
508 {
|
adamstark@100
|
509 for (int a = 1; a <= numCombElements; a++) // number of comb elements
|
adamstark@46
|
510 {
|
adamstark@100
|
511 for (int b = 1 - a; b <= a - 1; b++) // general state using normalisation of comb elements
|
adamstark@46
|
512 {
|
adamstark@58
|
513 combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row
|
adamstark@46
|
514 }
|
adamstark@46
|
515 }
|
adamstark@46
|
516 }
|
adamstark@46
|
517 }
|
adamstark@46
|
518
|
adamstark@51
|
519 //=======================================================================
|
adamstark@100
|
520 void BTrack::calculateBalancedACF (std::vector<double>& onsetDetectionFunction)
|
adamstark@46
|
521 {
|
adamstark@88
|
522 int onsetDetectionFunctionLength = 512;
|
adamstark@88
|
523
|
adamstark@93
|
524 #ifdef USE_FFTW
|
adamstark@88
|
525 // copy into complex array and zero pad
|
adamstark@88
|
526 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@88
|
527 {
|
adamstark@88
|
528 if (i < onsetDetectionFunctionLength)
|
adamstark@88
|
529 {
|
adamstark@88
|
530 complexIn[i][0] = onsetDetectionFunction[i];
|
adamstark@88
|
531 complexIn[i][1] = 0.0;
|
adamstark@88
|
532 }
|
adamstark@88
|
533 else
|
adamstark@88
|
534 {
|
adamstark@88
|
535 complexIn[i][0] = 0.0;
|
adamstark@88
|
536 complexIn[i][1] = 0.0;
|
adamstark@88
|
537 }
|
adamstark@88
|
538 }
|
adamstark@88
|
539
|
adamstark@88
|
540 // perform the fft
|
adamstark@91
|
541 fftw_execute (acfForwardFFT);
|
adamstark@88
|
542
|
adamstark@88
|
543 // multiply by complex conjugate
|
adamstark@88
|
544 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@88
|
545 {
|
adamstark@88
|
546 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
|
adamstark@88
|
547 complexOut[i][1] = 0.0;
|
adamstark@88
|
548 }
|
adamstark@88
|
549
|
adamstark@88
|
550 // perform the ifft
|
adamstark@91
|
551 fftw_execute (acfBackwardFFT);
|
adamstark@88
|
552
|
adamstark@93
|
553 #endif
|
adamstark@93
|
554
|
adamstark@93
|
555 #ifdef USE_KISS_FFT
|
adamstark@93
|
556 // copy into complex array and zero pad
|
adamstark@93
|
557 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@93
|
558 {
|
adamstark@93
|
559 if (i < onsetDetectionFunctionLength)
|
adamstark@93
|
560 {
|
adamstark@93
|
561 fftIn[i].r = onsetDetectionFunction[i];
|
adamstark@93
|
562 fftIn[i].i = 0.0;
|
adamstark@93
|
563 }
|
adamstark@93
|
564 else
|
adamstark@93
|
565 {
|
adamstark@93
|
566 fftIn[i].r = 0.0;
|
adamstark@93
|
567 fftIn[i].i = 0.0;
|
adamstark@93
|
568 }
|
adamstark@93
|
569 }
|
adamstark@93
|
570
|
adamstark@93
|
571 // execute kiss fft
|
adamstark@93
|
572 kiss_fft (cfgForwards, fftIn, fftOut);
|
adamstark@93
|
573
|
adamstark@93
|
574 // multiply by complex conjugate
|
adamstark@93
|
575 for (int i = 0;i < FFTLengthForACFCalculation;i++)
|
adamstark@93
|
576 {
|
adamstark@93
|
577 fftOut[i].r = fftOut[i].r * fftOut[i].r + fftOut[i].i * fftOut[i].i;
|
adamstark@93
|
578 fftOut[i].i = 0.0;
|
adamstark@93
|
579 }
|
adamstark@93
|
580
|
adamstark@93
|
581 // perform the ifft
|
adamstark@93
|
582 kiss_fft (cfgBackwards, fftOut, fftIn);
|
adamstark@93
|
583
|
adamstark@93
|
584 #endif
|
adamstark@88
|
585
|
adamstark@88
|
586 double lag = 512;
|
adamstark@88
|
587
|
adamstark@91
|
588 for (int i = 0; i < 512; i++)
|
adamstark@88
|
589 {
|
adamstark@93
|
590 #ifdef USE_FFTW
|
adamstark@88
|
591 // calculate absolute value of result
|
adamstark@91
|
592 double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
|
adamstark@93
|
593 #endif
|
adamstark@88
|
594
|
adamstark@93
|
595 #ifdef USE_KISS_FFT
|
adamstark@93
|
596 // calculate absolute value of result
|
adamstark@93
|
597 double absValue = sqrt (fftIn[i].r * fftIn[i].r + fftIn[i].i * fftIn[i].i);
|
adamstark@93
|
598 #endif
|
adamstark@88
|
599 // divide by inverse lad to deal with scale bias towards small lags
|
adamstark@88
|
600 acf[i] = absValue / lag;
|
adamstark@88
|
601
|
adamstark@88
|
602 // this division by 1024 is technically unnecessary but it ensures the algorithm produces
|
adamstark@88
|
603 // exactly the same ACF output as the old time domain implementation. The time difference is
|
adamstark@88
|
604 // minimal so I decided to keep it
|
adamstark@88
|
605 acf[i] = acf[i] / 1024.;
|
adamstark@88
|
606
|
adamstark@88
|
607 lag = lag - 1.;
|
adamstark@88
|
608 }
|
adamstark@46
|
609 }
|
adamstark@46
|
610
|
adamstark@51
|
611 //=======================================================================
|
adamstark@100
|
612 double BTrack::calculateMeanOfVector (std::vector<double>& vector, int startIndex, int endIndex)
|
adamstark@46
|
613 {
|
adamstark@97
|
614 int length = endIndex - startIndex;
|
adamstark@100
|
615 double sum = std::accumulate (vector.begin() + startIndex, vector.begin() + endIndex, 0.0);
|
adamstark@47
|
616
|
adamstark@47
|
617 if (length > 0)
|
adamstark@97
|
618 return sum / static_cast<double> (length); // average and return
|
adamstark@47
|
619 else
|
adamstark@47
|
620 return 0;
|
adamstark@46
|
621 }
|
adamstark@46
|
622
|
adamstark@51
|
623 //=======================================================================
|
adamstark@100
|
624 void BTrack::normaliseVector (std::vector<double>& vector)
|
adamstark@46
|
625 {
|
adamstark@100
|
626 double sum = std::accumulate (vector.begin(), vector.end(), 0.0);
|
adamstark@46
|
627
|
adamstark@46
|
628 if (sum > 0)
|
adamstark@97
|
629 {
|
adamstark@100
|
630 for (int i = 0; i < vector.size(); i++)
|
adamstark@100
|
631 vector[i] = vector[i] / sum;
|
adamstark@97
|
632 }
|
adamstark@46
|
633 }
|
adamstark@46
|
634
|
adamstark@51
|
635 //=======================================================================
|
adamstark@100
|
636 void BTrack::updateCumulativeScore (double onsetDetectionFunctionSample)
|
adamstark@98
|
637 {
|
adamstark@100
|
638 int windowStart = onsetDFBufferSize - round (2. * beatPeriod);
|
adamstark@100
|
639 int windowEnd = onsetDFBufferSize - round (beatPeriod / 2.);
|
adamstark@100
|
640 int windowSize = windowEnd - windowStart + 1;
|
adamstark@46
|
641
|
adamstark@98
|
642 double w1[windowSize];
|
adamstark@97
|
643 double v = -2. * beatPeriod;
|
adamstark@98
|
644 double weightedCumulativeScore;
|
adamstark@46
|
645
|
adamstark@46
|
646 // create window
|
adamstark@98
|
647 for (int i = 0; i < windowSize; i++)
|
adamstark@46
|
648 {
|
adamstark@98
|
649 double a = tightness * log (-v / beatPeriod);
|
adamstark@98
|
650 w1[i] = exp ((-1. * a * a) / 2.);
|
adamstark@98
|
651 v = v + 1.;
|
adamstark@46
|
652 }
|
adamstark@46
|
653
|
adamstark@46
|
654 // calculate new cumulative score value
|
adamstark@98
|
655 double maxValue = 0;
|
adamstark@46
|
656 int n = 0;
|
adamstark@100
|
657 for (int i = windowStart; i <= windowEnd; i++)
|
adamstark@46
|
658 {
|
adamstark@98
|
659 weightedCumulativeScore = cumulativeScore[i] * w1[n];
|
adamstark@46
|
660
|
adamstark@98
|
661 if (weightedCumulativeScore > maxValue)
|
adamstark@98
|
662 maxValue = weightedCumulativeScore;
|
adamstark@98
|
663
|
adamstark@46
|
664 n++;
|
adamstark@46
|
665 }
|
adamstark@46
|
666
|
adamstark@100
|
667 latestCumulativeScoreValue = ((1 - alpha) * onsetDetectionFunctionSample) + (alpha * maxValue);
|
adamstark@91
|
668 cumulativeScore.addSampleToEnd (latestCumulativeScoreValue);
|
adamstark@46
|
669 }
|
adamstark@46
|
670
|
adamstark@51
|
671 //=======================================================================
|
adamstark@57
|
672 void BTrack::predictBeat()
|
adamstark@46
|
673 {
|
adamstark@58
|
674 int windowSize = (int) beatPeriod;
|
adamstark@58
|
675 double futureCumulativeScore[onsetDFBufferSize + windowSize];
|
adamstark@58
|
676 double w2[windowSize];
|
adamstark@93
|
677
|
adamstark@46
|
678 // copy cumscore to first part of fcumscore
|
adamstark@58
|
679 for (int i = 0;i < onsetDFBufferSize;i++)
|
adamstark@46
|
680 {
|
adamstark@58
|
681 futureCumulativeScore[i] = cumulativeScore[i];
|
adamstark@46
|
682 }
|
adamstark@46
|
683
|
adamstark@46
|
684 // create future window
|
adamstark@54
|
685 double v = 1;
|
adamstark@91
|
686 for (int i = 0; i < windowSize; i++)
|
adamstark@46
|
687 {
|
adamstark@57
|
688 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
|
adamstark@46
|
689 v++;
|
adamstark@46
|
690 }
|
adamstark@46
|
691
|
adamstark@46
|
692 // create past window
|
adamstark@57
|
693 v = -2*beatPeriod;
|
adamstark@58
|
694 int start = onsetDFBufferSize - round(2*beatPeriod);
|
adamstark@58
|
695 int end = onsetDFBufferSize - round(beatPeriod/2);
|
adamstark@46
|
696 int pastwinsize = end-start+1;
|
adamstark@54
|
697 double w1[pastwinsize];
|
adamstark@46
|
698
|
adamstark@46
|
699 for (int i = 0;i < pastwinsize;i++)
|
adamstark@46
|
700 {
|
adamstark@57
|
701 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
|
adamstark@46
|
702 v = v+1;
|
adamstark@46
|
703 }
|
adamstark@46
|
704
|
adamstark@46
|
705 // calculate future cumulative score
|
adamstark@54
|
706 double max;
|
adamstark@46
|
707 int n;
|
adamstark@54
|
708 double wcumscore;
|
adamstark@91
|
709 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++)
|
adamstark@46
|
710 {
|
adamstark@91
|
711 start = i - round (2*beatPeriod);
|
adamstark@91
|
712 end = i - round (beatPeriod/2);
|
adamstark@46
|
713
|
adamstark@46
|
714 max = 0;
|
adamstark@46
|
715 n = 0;
|
adamstark@46
|
716 for (int k=start;k <= end;k++)
|
adamstark@46
|
717 {
|
adamstark@58
|
718 wcumscore = futureCumulativeScore[k]*w1[n];
|
adamstark@46
|
719
|
adamstark@46
|
720 if (wcumscore > max)
|
adamstark@46
|
721 {
|
adamstark@46
|
722 max = wcumscore;
|
adamstark@46
|
723 }
|
adamstark@46
|
724 n++;
|
adamstark@46
|
725 }
|
adamstark@46
|
726
|
adamstark@58
|
727 futureCumulativeScore[i] = max;
|
adamstark@46
|
728 }
|
adamstark@46
|
729
|
adamstark@46
|
730 // predict beat
|
adamstark@46
|
731 max = 0;
|
adamstark@46
|
732 n = 0;
|
adamstark@46
|
733
|
adamstark@91
|
734 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++)
|
adamstark@46
|
735 {
|
adamstark@58
|
736 wcumscore = futureCumulativeScore[i]*w2[n];
|
adamstark@46
|
737
|
adamstark@46
|
738 if (wcumscore > max)
|
adamstark@46
|
739 {
|
adamstark@46
|
740 max = wcumscore;
|
adamstark@58
|
741 beatCounter = n;
|
adamstark@46
|
742 }
|
adamstark@46
|
743
|
adamstark@46
|
744 n++;
|
adamstark@46
|
745 }
|
adamstark@46
|
746
|
adamstark@46
|
747 // set next prediction time
|
adamstark@91
|
748 m0 = beatCounter + round (beatPeriod / 2);
|
adamstark@97
|
749 }
|