annotate src/BTrack.cpp @ 91:a88d887bd281

Code style update to BTrack class
author Adam Stark <adamstark.uk@gmail.com>
date Wed, 11 May 2016 00:06:52 +0100
parents b6fc77f471bb
children 4aa362058011
rev   line source
adamstark@46 1 //=======================================================================
adamstark@46 2 /** @file BTrack.cpp
adamstark@47 3 * @brief BTrack - a real-time beat tracker
adamstark@46 4 * @author Adam Stark
adamstark@46 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46 6 *
adamstark@46 7 * This program is free software: you can redistribute it and/or modify
adamstark@46 8 * it under the terms of the GNU General Public License as published by
adamstark@46 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@46 10 * (at your option) any later version.
adamstark@46 11 *
adamstark@46 12 * This program is distributed in the hope that it will be useful,
adamstark@46 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46 15 * GNU General Public License for more details.
adamstark@46 16 *
adamstark@46 17 * You should have received a copy of the GNU General Public License
adamstark@46 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@46 19 */
adamstark@46 20 //=======================================================================
adamstark@46 21
adamstark@46 22 #include <cmath>
adamstark@52 23 #include <algorithm>
adamstark@46 24 #include "BTrack.h"
adamstark@46 25 #include "samplerate.h"
adamstark@89 26 #include <iostream>
adamstark@46 27
adamstark@55 28 //=======================================================================
adamstark@91 29 BTrack::BTrack()
adamstark@91 30 : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow)
adamstark@55 31 {
adamstark@55 32 initialise(512, 1024);
adamstark@55 33 }
adamstark@46 34
adamstark@51 35 //=======================================================================
adamstark@91 36 BTrack::BTrack (int hopSize_)
adamstark@91 37 : odf(hopSize_, 2*hopSize_, ComplexSpectralDifferenceHWR, HanningWindow)
adamstark@46 38 {
adamstark@57 39 initialise(hopSize_, 2*hopSize_);
adamstark@55 40 }
adamstark@55 41
adamstark@55 42 //=======================================================================
adamstark@91 43 BTrack::BTrack (int hopSize_, int frameSize_)
adamstark@91 44 : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow)
adamstark@55 45 {
adamstark@91 46 initialise (hopSize_, frameSize_);
adamstark@55 47 }
adamstark@55 48
adamstark@55 49 //=======================================================================
adamstark@88 50 BTrack::~BTrack()
adamstark@88 51 {
adamstark@88 52 // destroy fft plan
adamstark@91 53 fftw_destroy_plan (acfForwardFFT);
adamstark@91 54 fftw_destroy_plan (acfBackwardFFT);
adamstark@91 55 fftw_free (complexIn);
adamstark@91 56 fftw_free (complexOut);
adamstark@88 57 }
adamstark@88 58
adamstark@88 59 //=======================================================================
adamstark@91 60 double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs)
adamstark@55 61 {
adamstark@55 62 double hop = (double) hopSize;
adamstark@55 63 double samplingFrequency = (double) fs;
adamstark@55 64 double frameNum = (double) frameNumber;
adamstark@55 65
adamstark@55 66 return ((hop / samplingFrequency) * frameNum);
adamstark@55 67 }
adamstark@55 68
adamstark@55 69 //=======================================================================
adamstark@91 70 double BTrack::getBeatTimeInSeconds (int frameNumber, int hopSize, int fs)
adamstark@55 71 {
adamstark@55 72 long frameNum = (long) frameNumber;
adamstark@55 73
adamstark@91 74 return getBeatTimeInSeconds (frameNum, hopSize, fs);
adamstark@55 75 }
adamstark@55 76
adamstark@55 77
adamstark@55 78
adamstark@55 79 //=======================================================================
adamstark@91 80 void BTrack::initialise (int hopSize_, int frameSize_)
adamstark@55 81 {
adamstark@55 82 double rayparam = 43;
adamstark@54 83 double pi = 3.14159265;
adamstark@46 84
adamstark@46 85
adamstark@46 86 // initialise parameters
adamstark@46 87 tightness = 5;
adamstark@46 88 alpha = 0.9;
adamstark@46 89 tempo = 120;
adamstark@58 90 estimatedTempo = 120.0;
adamstark@59 91 tempoToLagFactor = 60.*44100./512.;
adamstark@46 92
adamstark@46 93 m0 = 10;
adamstark@58 94 beatCounter = -1;
adamstark@46 95
adamstark@57 96 beatDueInFrame = false;
adamstark@46 97
adamstark@58 98
adamstark@46 99 // create rayleigh weighting vector
adamstark@91 100 for (int n = 0; n < 128; n++)
adamstark@46 101 {
adamstark@58 102 weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
adamstark@46 103 }
adamstark@46 104
adamstark@46 105 // initialise prev_delta
adamstark@91 106 for (int i = 0; i < 41; i++)
adamstark@46 107 {
adamstark@58 108 prevDelta[i] = 1;
adamstark@46 109 }
adamstark@46 110
adamstark@54 111 double t_mu = 41/2;
adamstark@54 112 double m_sig;
adamstark@54 113 double x;
adamstark@46 114 // create tempo transition matrix
adamstark@46 115 m_sig = 41/8;
adamstark@46 116 for (int i = 0;i < 41;i++)
adamstark@46 117 {
adamstark@46 118 for (int j = 0;j < 41;j++)
adamstark@46 119 {
adamstark@46 120 x = j+1;
adamstark@46 121 t_mu = i+1;
adamstark@58 122 tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46 123 }
adamstark@55 124 }
adamstark@46 125
adamstark@46 126 // tempo is not fixed
adamstark@58 127 tempoFixed = false;
adamstark@58 128
adamstark@58 129 // initialise latest cumulative score value
adamstark@58 130 // in case it is requested before any processing takes place
adamstark@58 131 latestCumulativeScoreValue = 0;
adamstark@55 132
adamstark@55 133 // initialise algorithm given the hopsize
adamstark@57 134 setHopSize(hopSize_);
adamstark@88 135
adamstark@88 136
adamstark@88 137 // Set up FFT for calculating the auto-correlation function
adamstark@88 138 FFTLengthForACFCalculation = 1024;
adamstark@88 139
adamstark@91 140 complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@91 141 complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@88 142
adamstark@91 143 acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@91 144 acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@46 145 }
adamstark@46 146
adamstark@51 147 //=======================================================================
adamstark@91 148 void BTrack::setHopSize (int hopSize_)
adamstark@46 149 {
adamstark@57 150 hopSize = hopSize_;
adamstark@58 151 onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size
adamstark@46 152
adamstark@57 153 beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
adamstark@63 154
adamstark@63 155 // set size of onset detection function buffer
adamstark@91 156 onsetDF.resize (onsetDFBufferSize);
adamstark@63 157
adamstark@63 158 // set size of cumulative score buffer
adamstark@91 159 cumulativeScore.resize (onsetDFBufferSize);
adamstark@46 160
adamstark@46 161 // initialise df_buffer to zeros
adamstark@91 162 for (int i = 0; i < onsetDFBufferSize; i++)
adamstark@46 163 {
adamstark@58 164 onsetDF[i] = 0;
adamstark@58 165 cumulativeScore[i] = 0;
adamstark@46 166
adamstark@57 167 if ((i % ((int) round(beatPeriod))) == 0)
adamstark@46 168 {
adamstark@58 169 onsetDF[i] = 1;
adamstark@46 170 }
adamstark@46 171 }
adamstark@46 172 }
adamstark@46 173
adamstark@51 174 //=======================================================================
adamstark@91 175 void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_)
adamstark@65 176 {
adamstark@65 177 // update the onset detection function object
adamstark@91 178 odf.initialise (hopSize_, frameSize_);
adamstark@65 179
adamstark@65 180 // update the hop size being used by the beat tracker
adamstark@91 181 setHopSize (hopSize_);
adamstark@65 182 }
adamstark@65 183
adamstark@65 184 //=======================================================================
adamstark@57 185 bool BTrack::beatDueInCurrentFrame()
adamstark@57 186 {
adamstark@57 187 return beatDueInFrame;
adamstark@57 188 }
adamstark@57 189
adamstark@57 190 //=======================================================================
adamstark@78 191 double BTrack::getCurrentTempoEstimate()
adamstark@78 192 {
adamstark@78 193 return estimatedTempo;
adamstark@78 194 }
adamstark@78 195
adamstark@78 196 //=======================================================================
adamstark@57 197 int BTrack::getHopSize()
adamstark@57 198 {
adamstark@57 199 return hopSize;
adamstark@57 200 }
adamstark@57 201
adamstark@57 202 //=======================================================================
adamstark@58 203 double BTrack::getLatestCumulativeScoreValue()
adamstark@58 204 {
adamstark@58 205 return latestCumulativeScoreValue;
adamstark@58 206 }
adamstark@58 207
adamstark@58 208 //=======================================================================
adamstark@91 209 void BTrack::processAudioFrame (double* frame)
adamstark@55 210 {
adamstark@55 211 // calculate the onset detection function sample for the frame
adamstark@91 212 double sample = odf.calculateOnsetDetectionFunctionSample (frame);
adamstark@55 213
adamstark@55 214 // process the new onset detection function sample in the beat tracking algorithm
adamstark@91 215 processOnsetDetectionFunctionSample (sample);
adamstark@55 216 }
adamstark@55 217
adamstark@55 218 //=======================================================================
adamstark@91 219 void BTrack::processOnsetDetectionFunctionSample (double newSample)
adamstark@56 220 {
adamstark@56 221 // we need to ensure that the onset
adamstark@56 222 // detection function sample is positive
adamstark@91 223 newSample = fabs (newSample);
adamstark@56 224
adamstark@56 225 // add a tiny constant to the sample to stop it from ever going
adamstark@56 226 // to zero. this is to avoid problems further down the line
adamstark@56 227 newSample = newSample + 0.0001;
adamstark@56 228
adamstark@46 229 m0--;
adamstark@58 230 beatCounter--;
adamstark@57 231 beatDueInFrame = false;
adamstark@90 232
adamstark@46 233 // add new sample at the end
adamstark@91 234 onsetDF.addSampleToEnd (newSample);
adamstark@46 235
adamstark@46 236 // update cumulative score
adamstark@91 237 updateCumulativeScore (newSample);
adamstark@46 238
adamstark@46 239 // if we are halfway between beats
adamstark@46 240 if (m0 == 0)
adamstark@46 241 {
adamstark@57 242 predictBeat();
adamstark@46 243 }
adamstark@46 244
adamstark@46 245 // if we are at a beat
adamstark@58 246 if (beatCounter == 0)
adamstark@46 247 {
adamstark@57 248 beatDueInFrame = true; // indicate a beat should be output
adamstark@46 249
adamstark@46 250 // recalculate the tempo
adamstark@57 251 resampleOnsetDetectionFunction();
adamstark@57 252 calculateTempo();
adamstark@46 253 }
adamstark@46 254 }
adamstark@46 255
adamstark@51 256 //=======================================================================
adamstark@91 257 void BTrack::setTempo (double tempo)
adamstark@46 258 {
adamstark@46 259
adamstark@46 260 /////////// TEMPO INDICATION RESET //////////////////
adamstark@46 261
adamstark@46 262 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 263 while (tempo > 160)
adamstark@46 264 {
adamstark@46 265 tempo = tempo/2;
adamstark@46 266 }
adamstark@46 267
adamstark@46 268 while (tempo < 80)
adamstark@46 269 {
adamstark@46 270 tempo = tempo * 2;
adamstark@46 271 }
adamstark@46 272
adamstark@46 273 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 274 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 275
adamstark@46 276 // now set previous tempo observations to zero
adamstark@46 277 for (int i=0;i < 41;i++)
adamstark@46 278 {
adamstark@58 279 prevDelta[i] = 0;
adamstark@46 280 }
adamstark@46 281
adamstark@46 282 // set desired tempo index to 1
adamstark@58 283 prevDelta[tempo_index] = 1;
adamstark@46 284
adamstark@46 285
adamstark@46 286 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46 287
adamstark@46 288 // calculate new beat period
adamstark@57 289 int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo));
adamstark@46 290
adamstark@46 291 int bcounter = 1;
adamstark@46 292 // initialise df_buffer to zeros
adamstark@58 293 for (int i = (onsetDFBufferSize-1);i >= 0;i--)
adamstark@46 294 {
adamstark@46 295 if (bcounter == 1)
adamstark@46 296 {
adamstark@58 297 cumulativeScore[i] = 150;
adamstark@58 298 onsetDF[i] = 150;
adamstark@46 299 }
adamstark@46 300 else
adamstark@46 301 {
adamstark@58 302 cumulativeScore[i] = 10;
adamstark@58 303 onsetDF[i] = 10;
adamstark@46 304 }
adamstark@46 305
adamstark@46 306 bcounter++;
adamstark@46 307
adamstark@46 308 if (bcounter > new_bperiod)
adamstark@46 309 {
adamstark@46 310 bcounter = 1;
adamstark@46 311 }
adamstark@46 312 }
adamstark@46 313
adamstark@46 314 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46 315
adamstark@46 316 // beat is now
adamstark@58 317 beatCounter = 0;
adamstark@46 318
adamstark@46 319 // offbeat is half of new beat period away
adamstark@54 320 m0 = (int) round(((double) new_bperiod)/2);
adamstark@46 321 }
adamstark@46 322
adamstark@51 323 //=======================================================================
adamstark@91 324 void BTrack::fixTempo (double tempo)
adamstark@46 325 {
adamstark@46 326 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 327 while (tempo > 160)
adamstark@46 328 {
adamstark@46 329 tempo = tempo/2;
adamstark@46 330 }
adamstark@46 331
adamstark@46 332 while (tempo < 80)
adamstark@46 333 {
adamstark@46 334 tempo = tempo * 2;
adamstark@46 335 }
adamstark@46 336
adamstark@46 337 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 338 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 339
adamstark@46 340 // now set previous fixed previous tempo observation values to zero
adamstark@46 341 for (int i=0;i < 41;i++)
adamstark@46 342 {
adamstark@58 343 prevDeltaFixed[i] = 0;
adamstark@46 344 }
adamstark@46 345
adamstark@46 346 // set desired tempo index to 1
adamstark@58 347 prevDeltaFixed[tempo_index] = 1;
adamstark@46 348
adamstark@46 349 // set the tempo fix flag
adamstark@58 350 tempoFixed = true;
adamstark@46 351 }
adamstark@46 352
adamstark@51 353 //=======================================================================
adamstark@57 354 void BTrack::doNotFixTempo()
adamstark@46 355 {
adamstark@46 356 // set the tempo fix flag
adamstark@58 357 tempoFixed = false;
adamstark@46 358 }
adamstark@46 359
adamstark@51 360 //=======================================================================
adamstark@57 361 void BTrack::resampleOnsetDetectionFunction()
adamstark@46 362 {
adamstark@46 363 float output[512];
adamstark@89 364
adamstark@58 365 float input[onsetDFBufferSize];
adamstark@54 366
adamstark@58 367 for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@54 368 {
adamstark@58 369 input[i] = (float) onsetDF[i];
adamstark@54 370 }
adamstark@89 371
adamstark@89 372 double src_ratio = 512.0/((double) onsetDFBufferSize);
adamstark@89 373 int BUFFER_LEN = onsetDFBufferSize;
adamstark@89 374 int output_len;
adamstark@89 375 SRC_DATA src_data ;
adamstark@89 376
adamstark@89 377 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@89 378 output_len = 512;
adamstark@89 379
adamstark@89 380 src_data.data_in = input;
adamstark@89 381 src_data.input_frames = BUFFER_LEN;
adamstark@89 382
adamstark@89 383 src_data.src_ratio = src_ratio;
adamstark@89 384
adamstark@89 385 src_data.data_out = output;
adamstark@89 386 src_data.output_frames = output_len;
adamstark@89 387
adamstark@89 388 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@89 389
adamstark@89 390 for (int i = 0;i < output_len;i++)
adamstark@89 391 {
adamstark@89 392 resampledOnsetDF[i] = (double) src_data.data_out[i];
adamstark@89 393 }
adamstark@46 394 }
adamstark@46 395
adamstark@51 396 //=======================================================================
adamstark@57 397 void BTrack::calculateTempo()
adamstark@46 398 {
adamstark@46 399 // adaptive threshold on input
adamstark@91 400 adaptiveThreshold (resampledOnsetDF,512);
adamstark@46 401
adamstark@46 402 // calculate auto-correlation function of detection function
adamstark@91 403 calculateBalancedACF (resampledOnsetDF);
adamstark@46 404
adamstark@46 405 // calculate output of comb filterbank
adamstark@57 406 calculateOutputOfCombFilterBank();
adamstark@46 407
adamstark@46 408 // adaptive threshold on rcf
adamstark@91 409 adaptiveThreshold (combFilterBankOutput,128);
adamstark@46 410
adamstark@46 411
adamstark@46 412 int t_index;
adamstark@46 413 int t_index2;
adamstark@59 414 // calculate tempo observation vector from beat period observation vector
adamstark@46 415 for (int i = 0;i < 41;i++)
adamstark@46 416 {
adamstark@91 417 t_index = (int) round (tempoToLagFactor / ((double) ((2*i)+80)));
adamstark@91 418 t_index2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160)));
adamstark@46 419
adamstark@46 420
adamstark@58 421 tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1];
adamstark@46 422 }
adamstark@46 423
adamstark@46 424
adamstark@54 425 double maxval;
adamstark@54 426 double maxind;
adamstark@54 427 double curval;
adamstark@46 428
adamstark@46 429 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@58 430 if (tempoFixed)
adamstark@46 431 {
adamstark@46 432 for (int k = 0;k < 41;k++)
adamstark@46 433 {
adamstark@58 434 prevDelta[k] = prevDeltaFixed[k];
adamstark@46 435 }
adamstark@46 436 }
adamstark@46 437
adamstark@46 438 for (int j=0;j < 41;j++)
adamstark@46 439 {
adamstark@46 440 maxval = -1;
adamstark@46 441 for (int i = 0;i < 41;i++)
adamstark@46 442 {
adamstark@91 443 curval = prevDelta[i] * tempoTransitionMatrix[i][j];
adamstark@46 444
adamstark@46 445 if (curval > maxval)
adamstark@46 446 {
adamstark@46 447 maxval = curval;
adamstark@46 448 }
adamstark@46 449 }
adamstark@46 450
adamstark@91 451 delta[j] = maxval * tempoObservationVector[j];
adamstark@46 452 }
adamstark@46 453
adamstark@46 454
adamstark@57 455 normaliseArray(delta,41);
adamstark@46 456
adamstark@46 457 maxind = -1;
adamstark@46 458 maxval = -1;
adamstark@46 459
adamstark@46 460 for (int j=0;j < 41;j++)
adamstark@46 461 {
adamstark@46 462 if (delta[j] > maxval)
adamstark@46 463 {
adamstark@46 464 maxval = delta[j];
adamstark@46 465 maxind = j;
adamstark@46 466 }
adamstark@46 467
adamstark@58 468 prevDelta[j] = delta[j];
adamstark@46 469 }
adamstark@46 470
adamstark@91 471 beatPeriod = round ((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize)));
adamstark@46 472
adamstark@57 473 if (beatPeriod > 0)
adamstark@46 474 {
adamstark@91 475 estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod);
adamstark@46 476 }
adamstark@46 477 }
adamstark@46 478
adamstark@51 479 //=======================================================================
adamstark@91 480 void BTrack::adaptiveThreshold (double*x, int N)
adamstark@46 481 {
adamstark@46 482 int i = 0;
adamstark@46 483 int k,t = 0;
adamstark@54 484 double x_thresh[N];
adamstark@46 485
adamstark@46 486 int p_post = 7;
adamstark@46 487 int p_pre = 8;
adamstark@46 488
adamstark@52 489 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46 490
adamstark@46 491 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46 492 for (i = 0;i <= t;i++)
adamstark@46 493 {
adamstark@91 494 k = std::min ((i+p_pre),N);
adamstark@91 495 x_thresh[i] = calculateMeanOfArray (x,1,k);
adamstark@46 496 }
adamstark@46 497 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46 498 for (i = t+1;i < N-p_post;i++)
adamstark@46 499 {
adamstark@91 500 x_thresh[i] = calculateMeanOfArray (x,i-p_pre,i+p_post);
adamstark@46 501 }
adamstark@46 502 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46 503 for (i = N-p_post;i < N;i++)
adamstark@46 504 {
adamstark@91 505 k = std::max ((i-p_post),1);
adamstark@91 506 x_thresh[i] = calculateMeanOfArray (x,k,N);
adamstark@46 507 }
adamstark@46 508
adamstark@46 509 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@91 510 for (i = 0; i < N; i++)
adamstark@46 511 {
adamstark@46 512 x[i] = x[i] - x_thresh[i];
adamstark@46 513 if (x[i] < 0)
adamstark@46 514 {
adamstark@46 515 x[i] = 0;
adamstark@46 516 }
adamstark@46 517 }
adamstark@46 518 }
adamstark@46 519
adamstark@51 520 //=======================================================================
adamstark@57 521 void BTrack::calculateOutputOfCombFilterBank()
adamstark@46 522 {
adamstark@46 523 int numelem;
adamstark@46 524
adamstark@46 525 for (int i = 0;i < 128;i++)
adamstark@46 526 {
adamstark@58 527 combFilterBankOutput[i] = 0;
adamstark@46 528 }
adamstark@46 529
adamstark@46 530 numelem = 4;
adamstark@46 531
adamstark@91 532 for (int i = 2; i <= 127; i++) // max beat period
adamstark@46 533 {
adamstark@91 534 for (int a = 1; a <= numelem; a++) // number of comb elements
adamstark@46 535 {
adamstark@91 536 for (int b = 1-a; b <= a-1; b++) // general state using normalisation of comb elements
adamstark@46 537 {
adamstark@58 538 combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46 539 }
adamstark@46 540 }
adamstark@46 541 }
adamstark@46 542 }
adamstark@46 543
adamstark@51 544 //=======================================================================
adamstark@91 545 void BTrack::calculateBalancedACF (double* onsetDetectionFunction)
adamstark@46 546 {
adamstark@88 547 int onsetDetectionFunctionLength = 512;
adamstark@88 548
adamstark@88 549 // copy into complex array and zero pad
adamstark@88 550 for (int i = 0;i < FFTLengthForACFCalculation;i++)
adamstark@88 551 {
adamstark@88 552 if (i < onsetDetectionFunctionLength)
adamstark@88 553 {
adamstark@88 554 complexIn[i][0] = onsetDetectionFunction[i];
adamstark@88 555 complexIn[i][1] = 0.0;
adamstark@88 556 }
adamstark@88 557 else
adamstark@88 558 {
adamstark@88 559 complexIn[i][0] = 0.0;
adamstark@88 560 complexIn[i][1] = 0.0;
adamstark@88 561 }
adamstark@88 562 }
adamstark@88 563
adamstark@88 564 // perform the fft
adamstark@91 565 fftw_execute (acfForwardFFT);
adamstark@88 566
adamstark@88 567 // multiply by complex conjugate
adamstark@88 568 for (int i = 0;i < FFTLengthForACFCalculation;i++)
adamstark@88 569 {
adamstark@88 570 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
adamstark@88 571 complexOut[i][1] = 0.0;
adamstark@88 572 }
adamstark@88 573
adamstark@88 574 // perform the ifft
adamstark@91 575 fftw_execute (acfBackwardFFT);
adamstark@88 576
adamstark@88 577
adamstark@88 578 double lag = 512;
adamstark@88 579
adamstark@91 580 for (int i = 0; i < 512; i++)
adamstark@88 581 {
adamstark@88 582 // calculate absolute value of result
adamstark@91 583 double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
adamstark@88 584
adamstark@88 585 // divide by inverse lad to deal with scale bias towards small lags
adamstark@88 586 acf[i] = absValue / lag;
adamstark@88 587
adamstark@88 588 // this division by 1024 is technically unnecessary but it ensures the algorithm produces
adamstark@88 589 // exactly the same ACF output as the old time domain implementation. The time difference is
adamstark@88 590 // minimal so I decided to keep it
adamstark@88 591 acf[i] = acf[i] / 1024.;
adamstark@88 592
adamstark@88 593 lag = lag - 1.;
adamstark@88 594 }
adamstark@46 595 }
adamstark@46 596
adamstark@51 597 //=======================================================================
adamstark@91 598 double BTrack::calculateMeanOfArray (double* array, int startIndex, int endIndex)
adamstark@46 599 {
adamstark@46 600 int i;
adamstark@47 601 double sum = 0;
adamstark@47 602
adamstark@59 603 int length = endIndex - startIndex;
adamstark@46 604
adamstark@46 605 // find sum
adamstark@91 606 for (i = startIndex; i < endIndex; i++)
adamstark@46 607 {
adamstark@46 608 sum = sum + array[i];
adamstark@46 609 }
adamstark@46 610
adamstark@47 611 if (length > 0)
adamstark@47 612 {
adamstark@47 613 return sum / length; // average and return
adamstark@47 614 }
adamstark@47 615 else
adamstark@47 616 {
adamstark@47 617 return 0;
adamstark@47 618 }
adamstark@46 619 }
adamstark@46 620
adamstark@51 621 //=======================================================================
adamstark@91 622 void BTrack::normaliseArray(double* array, int N)
adamstark@46 623 {
adamstark@46 624 double sum = 0;
adamstark@46 625
adamstark@91 626 for (int i = 0; i < N; i++)
adamstark@46 627 {
adamstark@46 628 if (array[i] > 0)
adamstark@46 629 {
adamstark@46 630 sum = sum + array[i];
adamstark@46 631 }
adamstark@46 632 }
adamstark@46 633
adamstark@46 634 if (sum > 0)
adamstark@46 635 {
adamstark@91 636 for (int i = 0; i < N; i++)
adamstark@46 637 {
adamstark@46 638 array[i] = array[i] / sum;
adamstark@46 639 }
adamstark@46 640 }
adamstark@46 641 }
adamstark@46 642
adamstark@51 643 //=======================================================================
adamstark@91 644 void BTrack::updateCumulativeScore (double odfSample)
adamstark@46 645 {
adamstark@46 646 int start, end, winsize;
adamstark@54 647 double max;
adamstark@46 648
adamstark@91 649 start = onsetDFBufferSize - round (2 * beatPeriod);
adamstark@91 650 end = onsetDFBufferSize - round (beatPeriod / 2);
adamstark@46 651 winsize = end-start+1;
adamstark@46 652
adamstark@54 653 double w1[winsize];
adamstark@57 654 double v = -2*beatPeriod;
adamstark@54 655 double wcumscore;
adamstark@46 656
adamstark@46 657
adamstark@46 658 // create window
adamstark@91 659 for (int i = 0; i < winsize; i++)
adamstark@46 660 {
adamstark@91 661 w1[i] = exp((-1*pow (tightness * log (-v / beatPeriod), 2)) / 2);
adamstark@46 662 v = v+1;
adamstark@46 663 }
adamstark@46 664
adamstark@46 665 // calculate new cumulative score value
adamstark@46 666 max = 0;
adamstark@46 667 int n = 0;
adamstark@91 668 for (int i=start; i <= end; i++)
adamstark@46 669 {
adamstark@58 670 wcumscore = cumulativeScore[i]*w1[n];
adamstark@46 671
adamstark@46 672 if (wcumscore > max)
adamstark@46 673 {
adamstark@46 674 max = wcumscore;
adamstark@46 675 }
adamstark@46 676 n++;
adamstark@46 677 }
adamstark@46 678
adamstark@90 679
adamstark@89 680 latestCumulativeScoreValue = ((1-alpha)*odfSample) + (alpha*max);
adamstark@89 681
adamstark@91 682 cumulativeScore.addSampleToEnd (latestCumulativeScoreValue);
adamstark@46 683 }
adamstark@46 684
adamstark@51 685 //=======================================================================
adamstark@57 686 void BTrack::predictBeat()
adamstark@46 687 {
adamstark@58 688 int windowSize = (int) beatPeriod;
adamstark@58 689 double futureCumulativeScore[onsetDFBufferSize + windowSize];
adamstark@58 690 double w2[windowSize];
adamstark@46 691 // copy cumscore to first part of fcumscore
adamstark@58 692 for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@46 693 {
adamstark@58 694 futureCumulativeScore[i] = cumulativeScore[i];
adamstark@46 695 }
adamstark@46 696
adamstark@46 697 // create future window
adamstark@54 698 double v = 1;
adamstark@91 699 for (int i = 0; i < windowSize; i++)
adamstark@46 700 {
adamstark@57 701 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
adamstark@46 702 v++;
adamstark@46 703 }
adamstark@46 704
adamstark@46 705 // create past window
adamstark@57 706 v = -2*beatPeriod;
adamstark@58 707 int start = onsetDFBufferSize - round(2*beatPeriod);
adamstark@58 708 int end = onsetDFBufferSize - round(beatPeriod/2);
adamstark@46 709 int pastwinsize = end-start+1;
adamstark@54 710 double w1[pastwinsize];
adamstark@46 711
adamstark@46 712 for (int i = 0;i < pastwinsize;i++)
adamstark@46 713 {
adamstark@57 714 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46 715 v = v+1;
adamstark@46 716 }
adamstark@46 717
adamstark@46 718
adamstark@46 719
adamstark@46 720 // calculate future cumulative score
adamstark@54 721 double max;
adamstark@46 722 int n;
adamstark@54 723 double wcumscore;
adamstark@91 724 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++)
adamstark@46 725 {
adamstark@91 726 start = i - round (2*beatPeriod);
adamstark@91 727 end = i - round (beatPeriod/2);
adamstark@46 728
adamstark@46 729 max = 0;
adamstark@46 730 n = 0;
adamstark@46 731 for (int k=start;k <= end;k++)
adamstark@46 732 {
adamstark@58 733 wcumscore = futureCumulativeScore[k]*w1[n];
adamstark@46 734
adamstark@46 735 if (wcumscore > max)
adamstark@46 736 {
adamstark@46 737 max = wcumscore;
adamstark@46 738 }
adamstark@46 739 n++;
adamstark@46 740 }
adamstark@46 741
adamstark@58 742 futureCumulativeScore[i] = max;
adamstark@46 743 }
adamstark@46 744
adamstark@46 745
adamstark@46 746 // predict beat
adamstark@46 747 max = 0;
adamstark@46 748 n = 0;
adamstark@46 749
adamstark@91 750 for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++)
adamstark@46 751 {
adamstark@58 752 wcumscore = futureCumulativeScore[i]*w2[n];
adamstark@46 753
adamstark@46 754 if (wcumscore > max)
adamstark@46 755 {
adamstark@46 756 max = wcumscore;
adamstark@58 757 beatCounter = n;
adamstark@46 758 }
adamstark@46 759
adamstark@46 760 n++;
adamstark@46 761 }
adamstark@46 762
adamstark@46 763 // set next prediction time
adamstark@91 764 m0 = beatCounter + round (beatPeriod / 2);
adamstark@46 765 }