Mercurial > hg > btrack
view src/BTrack.cpp @ 91:a88d887bd281
Code style update to BTrack class
author | Adam Stark <adamstark.uk@gmail.com> |
---|---|
date | Wed, 11 May 2016 00:06:52 +0100 |
parents | b6fc77f471bb |
children | 4aa362058011 |
line wrap: on
line source
//======================================================================= /** @file BTrack.cpp * @brief BTrack - a real-time beat tracker * @author Adam Stark * @copyright Copyright (C) 2008-2014 Queen Mary University of London * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ //======================================================================= #include <cmath> #include <algorithm> #include "BTrack.h" #include "samplerate.h" #include <iostream> //======================================================================= BTrack::BTrack() : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow) { initialise(512, 1024); } //======================================================================= BTrack::BTrack (int hopSize_) : odf(hopSize_, 2*hopSize_, ComplexSpectralDifferenceHWR, HanningWindow) { initialise(hopSize_, 2*hopSize_); } //======================================================================= BTrack::BTrack (int hopSize_, int frameSize_) : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow) { initialise (hopSize_, frameSize_); } //======================================================================= BTrack::~BTrack() { // destroy fft plan fftw_destroy_plan (acfForwardFFT); fftw_destroy_plan (acfBackwardFFT); fftw_free (complexIn); fftw_free (complexOut); } //======================================================================= double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs) { double hop = (double) hopSize; double samplingFrequency = (double) fs; double frameNum = (double) frameNumber; return ((hop / samplingFrequency) * frameNum); } //======================================================================= double BTrack::getBeatTimeInSeconds (int frameNumber, int hopSize, int fs) { long frameNum = (long) frameNumber; return getBeatTimeInSeconds (frameNum, hopSize, fs); } //======================================================================= void BTrack::initialise (int hopSize_, int frameSize_) { double rayparam = 43; double pi = 3.14159265; // initialise parameters tightness = 5; alpha = 0.9; tempo = 120; estimatedTempo = 120.0; tempoToLagFactor = 60.*44100./512.; m0 = 10; beatCounter = -1; beatDueInFrame = false; // create rayleigh weighting vector for (int n = 0; n < 128; n++) { weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); } // initialise prev_delta for (int i = 0; i < 41; i++) { prevDelta[i] = 1; } double t_mu = 41/2; double m_sig; double x; // create tempo transition matrix m_sig = 41/8; for (int i = 0;i < 41;i++) { for (int j = 0;j < 41;j++) { x = j+1; t_mu = i+1; tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) ); } } // tempo is not fixed tempoFixed = false; // initialise latest cumulative score value // in case it is requested before any processing takes place latestCumulativeScoreValue = 0; // initialise algorithm given the hopsize setHopSize(hopSize_); // Set up FFT for calculating the auto-correlation function FFTLengthForACFCalculation = 1024; complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation } //======================================================================= void BTrack::setHopSize (int hopSize_) { hopSize = hopSize_; onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); // set size of onset detection function buffer onsetDF.resize (onsetDFBufferSize); // set size of cumulative score buffer cumulativeScore.resize (onsetDFBufferSize); // initialise df_buffer to zeros for (int i = 0; i < onsetDFBufferSize; i++) { onsetDF[i] = 0; cumulativeScore[i] = 0; if ((i % ((int) round(beatPeriod))) == 0) { onsetDF[i] = 1; } } } //======================================================================= void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_) { // update the onset detection function object odf.initialise (hopSize_, frameSize_); // update the hop size being used by the beat tracker setHopSize (hopSize_); } //======================================================================= bool BTrack::beatDueInCurrentFrame() { return beatDueInFrame; } //======================================================================= double BTrack::getCurrentTempoEstimate() { return estimatedTempo; } //======================================================================= int BTrack::getHopSize() { return hopSize; } //======================================================================= double BTrack::getLatestCumulativeScoreValue() { return latestCumulativeScoreValue; } //======================================================================= void BTrack::processAudioFrame (double* frame) { // calculate the onset detection function sample for the frame double sample = odf.calculateOnsetDetectionFunctionSample (frame); // process the new onset detection function sample in the beat tracking algorithm processOnsetDetectionFunctionSample (sample); } //======================================================================= void BTrack::processOnsetDetectionFunctionSample (double newSample) { // we need to ensure that the onset // detection function sample is positive newSample = fabs (newSample); // add a tiny constant to the sample to stop it from ever going // to zero. this is to avoid problems further down the line newSample = newSample + 0.0001; m0--; beatCounter--; beatDueInFrame = false; // add new sample at the end onsetDF.addSampleToEnd (newSample); // update cumulative score updateCumulativeScore (newSample); // if we are halfway between beats if (m0 == 0) { predictBeat(); } // if we are at a beat if (beatCounter == 0) { beatDueInFrame = true; // indicate a beat should be output // recalculate the tempo resampleOnsetDetectionFunction(); calculateTempo(); } } //======================================================================= void BTrack::setTempo (double tempo) { /////////// TEMPO INDICATION RESET ////////////////// // firstly make sure tempo is between 80 and 160 bpm.. while (tempo > 160) { tempo = tempo/2; } while (tempo < 80) { tempo = tempo * 2; } // convert tempo from bpm value to integer index of tempo probability int tempo_index = (int) round((tempo - 80)/2); // now set previous tempo observations to zero for (int i=0;i < 41;i++) { prevDelta[i] = 0; } // set desired tempo index to 1 prevDelta[tempo_index] = 1; /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE ////////////////// // calculate new beat period int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo)); int bcounter = 1; // initialise df_buffer to zeros for (int i = (onsetDFBufferSize-1);i >= 0;i--) { if (bcounter == 1) { cumulativeScore[i] = 150; onsetDF[i] = 150; } else { cumulativeScore[i] = 10; onsetDF[i] = 10; } bcounter++; if (bcounter > new_bperiod) { bcounter = 1; } } /////////// INDICATE THAT THIS IS A BEAT ////////////////// // beat is now beatCounter = 0; // offbeat is half of new beat period away m0 = (int) round(((double) new_bperiod)/2); } //======================================================================= void BTrack::fixTempo (double tempo) { // firstly make sure tempo is between 80 and 160 bpm.. while (tempo > 160) { tempo = tempo/2; } while (tempo < 80) { tempo = tempo * 2; } // convert tempo from bpm value to integer index of tempo probability int tempo_index = (int) round((tempo - 80)/2); // now set previous fixed previous tempo observation values to zero for (int i=0;i < 41;i++) { prevDeltaFixed[i] = 0; } // set desired tempo index to 1 prevDeltaFixed[tempo_index] = 1; // set the tempo fix flag tempoFixed = true; } //======================================================================= void BTrack::doNotFixTempo() { // set the tempo fix flag tempoFixed = false; } //======================================================================= void BTrack::resampleOnsetDetectionFunction() { float output[512]; float input[onsetDFBufferSize]; for (int i = 0;i < onsetDFBufferSize;i++) { input[i] = (float) onsetDF[i]; } double src_ratio = 512.0/((double) onsetDFBufferSize); int BUFFER_LEN = onsetDFBufferSize; int output_len; SRC_DATA src_data ; //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; output_len = 512; src_data.data_in = input; src_data.input_frames = BUFFER_LEN; src_data.src_ratio = src_ratio; src_data.data_out = output; src_data.output_frames = output_len; src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); for (int i = 0;i < output_len;i++) { resampledOnsetDF[i] = (double) src_data.data_out[i]; } } //======================================================================= void BTrack::calculateTempo() { // adaptive threshold on input adaptiveThreshold (resampledOnsetDF,512); // calculate auto-correlation function of detection function calculateBalancedACF (resampledOnsetDF); // calculate output of comb filterbank calculateOutputOfCombFilterBank(); // adaptive threshold on rcf adaptiveThreshold (combFilterBankOutput,128); int t_index; int t_index2; // calculate tempo observation vector from beat period observation vector for (int i = 0;i < 41;i++) { t_index = (int) round (tempoToLagFactor / ((double) ((2*i)+80))); t_index2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160))); tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1]; } double maxval; double maxind; double curval; // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function if (tempoFixed) { for (int k = 0;k < 41;k++) { prevDelta[k] = prevDeltaFixed[k]; } } for (int j=0;j < 41;j++) { maxval = -1; for (int i = 0;i < 41;i++) { curval = prevDelta[i] * tempoTransitionMatrix[i][j]; if (curval > maxval) { maxval = curval; } } delta[j] = maxval * tempoObservationVector[j]; } normaliseArray(delta,41); maxind = -1; maxval = -1; for (int j=0;j < 41;j++) { if (delta[j] > maxval) { maxval = delta[j]; maxind = j; } prevDelta[j] = delta[j]; } beatPeriod = round ((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); if (beatPeriod > 0) { estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod); } } //======================================================================= void BTrack::adaptiveThreshold (double*x, int N) { int i = 0; int k,t = 0; double x_thresh[N]; int p_post = 7; int p_pre = 8; t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays // find threshold for first 't' samples, where a full average cannot be computed yet for (i = 0;i <= t;i++) { k = std::min ((i+p_pre),N); x_thresh[i] = calculateMeanOfArray (x,1,k); } // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] for (i = t+1;i < N-p_post;i++) { x_thresh[i] = calculateMeanOfArray (x,i-p_pre,i+p_post); } // for last few samples calculate threshold, again, not enough samples to do as above for (i = N-p_post;i < N;i++) { k = std::max ((i-p_post),1); x_thresh[i] = calculateMeanOfArray (x,k,N); } // subtract the threshold from the detection function and check that it is not less than 0 for (i = 0; i < N; i++) { x[i] = x[i] - x_thresh[i]; if (x[i] < 0) { x[i] = 0; } } } //======================================================================= void BTrack::calculateOutputOfCombFilterBank() { int numelem; for (int i = 0;i < 128;i++) { combFilterBankOutput[i] = 0; } numelem = 4; for (int i = 2; i <= 127; i++) // max beat period { for (int a = 1; a <= numelem; a++) // number of comb elements { for (int b = 1-a; b <= a-1; b++) // general state using normalisation of comb elements { combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row } } } } //======================================================================= void BTrack::calculateBalancedACF (double* onsetDetectionFunction) { int onsetDetectionFunctionLength = 512; // copy into complex array and zero pad for (int i = 0;i < FFTLengthForACFCalculation;i++) { if (i < onsetDetectionFunctionLength) { complexIn[i][0] = onsetDetectionFunction[i]; complexIn[i][1] = 0.0; } else { complexIn[i][0] = 0.0; complexIn[i][1] = 0.0; } } // perform the fft fftw_execute (acfForwardFFT); // multiply by complex conjugate for (int i = 0;i < FFTLengthForACFCalculation;i++) { complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1]; complexOut[i][1] = 0.0; } // perform the ifft fftw_execute (acfBackwardFFT); double lag = 512; for (int i = 0; i < 512; i++) { // calculate absolute value of result double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]); // divide by inverse lad to deal with scale bias towards small lags acf[i] = absValue / lag; // this division by 1024 is technically unnecessary but it ensures the algorithm produces // exactly the same ACF output as the old time domain implementation. The time difference is // minimal so I decided to keep it acf[i] = acf[i] / 1024.; lag = lag - 1.; } } //======================================================================= double BTrack::calculateMeanOfArray (double* array, int startIndex, int endIndex) { int i; double sum = 0; int length = endIndex - startIndex; // find sum for (i = startIndex; i < endIndex; i++) { sum = sum + array[i]; } if (length > 0) { return sum / length; // average and return } else { return 0; } } //======================================================================= void BTrack::normaliseArray(double* array, int N) { double sum = 0; for (int i = 0; i < N; i++) { if (array[i] > 0) { sum = sum + array[i]; } } if (sum > 0) { for (int i = 0; i < N; i++) { array[i] = array[i] / sum; } } } //======================================================================= void BTrack::updateCumulativeScore (double odfSample) { int start, end, winsize; double max; start = onsetDFBufferSize - round (2 * beatPeriod); end = onsetDFBufferSize - round (beatPeriod / 2); winsize = end-start+1; double w1[winsize]; double v = -2*beatPeriod; double wcumscore; // create window for (int i = 0; i < winsize; i++) { w1[i] = exp((-1*pow (tightness * log (-v / beatPeriod), 2)) / 2); v = v+1; } // calculate new cumulative score value max = 0; int n = 0; for (int i=start; i <= end; i++) { wcumscore = cumulativeScore[i]*w1[n]; if (wcumscore > max) { max = wcumscore; } n++; } latestCumulativeScoreValue = ((1-alpha)*odfSample) + (alpha*max); cumulativeScore.addSampleToEnd (latestCumulativeScoreValue); } //======================================================================= void BTrack::predictBeat() { int windowSize = (int) beatPeriod; double futureCumulativeScore[onsetDFBufferSize + windowSize]; double w2[windowSize]; // copy cumscore to first part of fcumscore for (int i = 0;i < onsetDFBufferSize;i++) { futureCumulativeScore[i] = cumulativeScore[i]; } // create future window double v = 1; for (int i = 0; i < windowSize; i++) { w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); v++; } // create past window v = -2*beatPeriod; int start = onsetDFBufferSize - round(2*beatPeriod); int end = onsetDFBufferSize - round(beatPeriod/2); int pastwinsize = end-start+1; double w1[pastwinsize]; for (int i = 0;i < pastwinsize;i++) { w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); v = v+1; } // calculate future cumulative score double max; int n; double wcumscore; for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++) { start = i - round (2*beatPeriod); end = i - round (beatPeriod/2); max = 0; n = 0; for (int k=start;k <= end;k++) { wcumscore = futureCumulativeScore[k]*w1[n]; if (wcumscore > max) { max = wcumscore; } n++; } futureCumulativeScore[i] = max; } // predict beat max = 0; n = 0; for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++) { wcumscore = futureCumulativeScore[i]*w2[n]; if (wcumscore > max) { max = wcumscore; beatCounter = n; } n++; } // set next prediction time m0 = beatCounter + round (beatPeriod / 2); }