annotate src/BTrack.cpp @ 90:b6fc77f471bb

Tidy
author Adam Stark <adamstark.uk@gmail.com>
date Tue, 10 May 2016 23:54:33 +0100
parents 5ef334c782f3
children a88d887bd281
rev   line source
adamstark@46 1 //=======================================================================
adamstark@46 2 /** @file BTrack.cpp
adamstark@47 3 * @brief BTrack - a real-time beat tracker
adamstark@46 4 * @author Adam Stark
adamstark@46 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46 6 *
adamstark@46 7 * This program is free software: you can redistribute it and/or modify
adamstark@46 8 * it under the terms of the GNU General Public License as published by
adamstark@46 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@46 10 * (at your option) any later version.
adamstark@46 11 *
adamstark@46 12 * This program is distributed in the hope that it will be useful,
adamstark@46 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46 15 * GNU General Public License for more details.
adamstark@46 16 *
adamstark@46 17 * You should have received a copy of the GNU General Public License
adamstark@46 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@46 19 */
adamstark@46 20 //=======================================================================
adamstark@46 21
adamstark@46 22 #include <cmath>
adamstark@52 23 #include <algorithm>
adamstark@46 24 #include "BTrack.h"
adamstark@46 25 #include "samplerate.h"
adamstark@89 26 #include <iostream>
adamstark@46 27
adamstark@55 28 //=======================================================================
adamstark@57 29 BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@55 30 {
adamstark@55 31 initialise(512, 1024);
adamstark@55 32 }
adamstark@46 33
adamstark@51 34 //=======================================================================
adamstark@57 35 BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@46 36 {
adamstark@57 37 initialise(hopSize_, 2*hopSize_);
adamstark@55 38 }
adamstark@55 39
adamstark@55 40 //=======================================================================
adamstark@57 41 BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@55 42 {
adamstark@57 43 initialise(hopSize_, frameSize_);
adamstark@55 44 }
adamstark@55 45
adamstark@55 46 //=======================================================================
adamstark@88 47 BTrack::~BTrack()
adamstark@88 48 {
adamstark@88 49 // destroy fft plan
adamstark@88 50 fftw_destroy_plan(acfForwardFFT);
adamstark@88 51 fftw_destroy_plan(acfBackwardFFT);
adamstark@88 52 fftw_free(complexIn);
adamstark@88 53 fftw_free(complexOut);
adamstark@88 54 }
adamstark@88 55
adamstark@88 56 //=======================================================================
adamstark@55 57 double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs)
adamstark@55 58 {
adamstark@55 59 double hop = (double) hopSize;
adamstark@55 60 double samplingFrequency = (double) fs;
adamstark@55 61 double frameNum = (double) frameNumber;
adamstark@55 62
adamstark@55 63 return ((hop / samplingFrequency) * frameNum);
adamstark@55 64 }
adamstark@55 65
adamstark@55 66 //=======================================================================
adamstark@55 67 double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs)
adamstark@55 68 {
adamstark@55 69 long frameNum = (long) frameNumber;
adamstark@55 70
adamstark@55 71 return getBeatTimeInSeconds(frameNum, hopSize, fs);
adamstark@55 72 }
adamstark@55 73
adamstark@55 74
adamstark@55 75
adamstark@55 76 //=======================================================================
adamstark@57 77 void BTrack::initialise(int hopSize_, int frameSize_)
adamstark@55 78 {
adamstark@55 79 double rayparam = 43;
adamstark@54 80 double pi = 3.14159265;
adamstark@46 81
adamstark@46 82
adamstark@46 83 // initialise parameters
adamstark@46 84 tightness = 5;
adamstark@46 85 alpha = 0.9;
adamstark@46 86 tempo = 120;
adamstark@58 87 estimatedTempo = 120.0;
adamstark@59 88 tempoToLagFactor = 60.*44100./512.;
adamstark@46 89
adamstark@46 90 m0 = 10;
adamstark@58 91 beatCounter = -1;
adamstark@46 92
adamstark@57 93 beatDueInFrame = false;
adamstark@46 94
adamstark@58 95
adamstark@46 96 // create rayleigh weighting vector
adamstark@46 97 for (int n = 0;n < 128;n++)
adamstark@46 98 {
adamstark@58 99 weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
adamstark@46 100 }
adamstark@46 101
adamstark@46 102 // initialise prev_delta
adamstark@46 103 for (int i = 0;i < 41;i++)
adamstark@46 104 {
adamstark@58 105 prevDelta[i] = 1;
adamstark@46 106 }
adamstark@46 107
adamstark@54 108 double t_mu = 41/2;
adamstark@54 109 double m_sig;
adamstark@54 110 double x;
adamstark@46 111 // create tempo transition matrix
adamstark@46 112 m_sig = 41/8;
adamstark@46 113 for (int i = 0;i < 41;i++)
adamstark@46 114 {
adamstark@46 115 for (int j = 0;j < 41;j++)
adamstark@46 116 {
adamstark@46 117 x = j+1;
adamstark@46 118 t_mu = i+1;
adamstark@58 119 tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46 120 }
adamstark@55 121 }
adamstark@46 122
adamstark@46 123 // tempo is not fixed
adamstark@58 124 tempoFixed = false;
adamstark@58 125
adamstark@58 126 // initialise latest cumulative score value
adamstark@58 127 // in case it is requested before any processing takes place
adamstark@58 128 latestCumulativeScoreValue = 0;
adamstark@55 129
adamstark@55 130 // initialise algorithm given the hopsize
adamstark@57 131 setHopSize(hopSize_);
adamstark@88 132
adamstark@88 133
adamstark@88 134 // Set up FFT for calculating the auto-correlation function
adamstark@88 135 FFTLengthForACFCalculation = 1024;
adamstark@88 136
adamstark@88 137 complexIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@88 138 complexOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@88 139
adamstark@88 140 acfForwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@88 141 acfBackwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@46 142 }
adamstark@46 143
adamstark@51 144 //=======================================================================
adamstark@57 145 void BTrack::setHopSize(int hopSize_)
adamstark@46 146 {
adamstark@57 147 hopSize = hopSize_;
adamstark@58 148 onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size
adamstark@46 149
adamstark@57 150 beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
adamstark@63 151
adamstark@63 152 // set size of onset detection function buffer
adamstark@63 153 onsetDF.resize(onsetDFBufferSize);
adamstark@63 154
adamstark@63 155 // set size of cumulative score buffer
adamstark@63 156 cumulativeScore.resize(onsetDFBufferSize);
adamstark@46 157
adamstark@46 158 // initialise df_buffer to zeros
adamstark@58 159 for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@46 160 {
adamstark@58 161 onsetDF[i] = 0;
adamstark@58 162 cumulativeScore[i] = 0;
adamstark@46 163
adamstark@46 164
adamstark@57 165 if ((i % ((int) round(beatPeriod))) == 0)
adamstark@46 166 {
adamstark@58 167 onsetDF[i] = 1;
adamstark@46 168 }
adamstark@46 169 }
adamstark@46 170 }
adamstark@46 171
adamstark@51 172 //=======================================================================
adamstark@65 173 void BTrack::updateHopAndFrameSize(int hopSize_,int frameSize_)
adamstark@65 174 {
adamstark@65 175 // update the onset detection function object
adamstark@66 176 odf.initialise(hopSize_, frameSize_);
adamstark@65 177
adamstark@65 178 // update the hop size being used by the beat tracker
adamstark@65 179 setHopSize(hopSize_);
adamstark@65 180 }
adamstark@65 181
adamstark@65 182 //=======================================================================
adamstark@57 183 bool BTrack::beatDueInCurrentFrame()
adamstark@57 184 {
adamstark@57 185 return beatDueInFrame;
adamstark@57 186 }
adamstark@57 187
adamstark@57 188 //=======================================================================
adamstark@78 189 double BTrack::getCurrentTempoEstimate()
adamstark@78 190 {
adamstark@78 191 return estimatedTempo;
adamstark@78 192 }
adamstark@78 193
adamstark@78 194 //=======================================================================
adamstark@57 195 int BTrack::getHopSize()
adamstark@57 196 {
adamstark@57 197 return hopSize;
adamstark@57 198 }
adamstark@57 199
adamstark@57 200 //=======================================================================
adamstark@58 201 double BTrack::getLatestCumulativeScoreValue()
adamstark@58 202 {
adamstark@58 203 return latestCumulativeScoreValue;
adamstark@58 204 }
adamstark@58 205
adamstark@58 206 //=======================================================================
adamstark@55 207 void BTrack::processAudioFrame(double *frame)
adamstark@55 208 {
adamstark@55 209 // calculate the onset detection function sample for the frame
adamstark@59 210 double sample = odf.calculateOnsetDetectionFunctionSample(frame);
adamstark@55 211
adamstark@56 212
adamstark@55 213
adamstark@55 214 // process the new onset detection function sample in the beat tracking algorithm
adamstark@55 215 processOnsetDetectionFunctionSample(sample);
adamstark@55 216 }
adamstark@55 217
adamstark@55 218 //=======================================================================
adamstark@55 219 void BTrack::processOnsetDetectionFunctionSample(double newSample)
adamstark@56 220 {
adamstark@56 221 // we need to ensure that the onset
adamstark@56 222 // detection function sample is positive
adamstark@56 223 newSample = fabs(newSample);
adamstark@56 224
adamstark@56 225 // add a tiny constant to the sample to stop it from ever going
adamstark@56 226 // to zero. this is to avoid problems further down the line
adamstark@56 227 newSample = newSample + 0.0001;
adamstark@56 228
adamstark@46 229 m0--;
adamstark@58 230 beatCounter--;
adamstark@57 231 beatDueInFrame = false;
adamstark@90 232
adamstark@46 233 // add new sample at the end
adamstark@89 234 onsetDF.addSampleToEnd(newSample);
adamstark@46 235
adamstark@46 236 // update cumulative score
adamstark@57 237 updateCumulativeScore(newSample);
adamstark@46 238
adamstark@46 239 // if we are halfway between beats
adamstark@46 240 if (m0 == 0)
adamstark@46 241 {
adamstark@57 242 predictBeat();
adamstark@46 243 }
adamstark@46 244
adamstark@46 245 // if we are at a beat
adamstark@58 246 if (beatCounter == 0)
adamstark@46 247 {
adamstark@57 248 beatDueInFrame = true; // indicate a beat should be output
adamstark@46 249
adamstark@46 250 // recalculate the tempo
adamstark@57 251 resampleOnsetDetectionFunction();
adamstark@57 252 calculateTempo();
adamstark@46 253 }
adamstark@46 254 }
adamstark@46 255
adamstark@51 256 //=======================================================================
adamstark@57 257 void BTrack::setTempo(double tempo)
adamstark@46 258 {
adamstark@46 259
adamstark@46 260 /////////// TEMPO INDICATION RESET //////////////////
adamstark@46 261
adamstark@46 262 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 263 while (tempo > 160)
adamstark@46 264 {
adamstark@46 265 tempo = tempo/2;
adamstark@46 266 }
adamstark@46 267
adamstark@46 268 while (tempo < 80)
adamstark@46 269 {
adamstark@46 270 tempo = tempo * 2;
adamstark@46 271 }
adamstark@46 272
adamstark@46 273 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 274 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 275
adamstark@46 276 // now set previous tempo observations to zero
adamstark@46 277 for (int i=0;i < 41;i++)
adamstark@46 278 {
adamstark@58 279 prevDelta[i] = 0;
adamstark@46 280 }
adamstark@46 281
adamstark@46 282 // set desired tempo index to 1
adamstark@58 283 prevDelta[tempo_index] = 1;
adamstark@46 284
adamstark@46 285
adamstark@46 286 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46 287
adamstark@46 288 // calculate new beat period
adamstark@57 289 int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo));
adamstark@46 290
adamstark@46 291 int bcounter = 1;
adamstark@46 292 // initialise df_buffer to zeros
adamstark@58 293 for (int i = (onsetDFBufferSize-1);i >= 0;i--)
adamstark@46 294 {
adamstark@46 295 if (bcounter == 1)
adamstark@46 296 {
adamstark@58 297 cumulativeScore[i] = 150;
adamstark@58 298 onsetDF[i] = 150;
adamstark@46 299 }
adamstark@46 300 else
adamstark@46 301 {
adamstark@58 302 cumulativeScore[i] = 10;
adamstark@58 303 onsetDF[i] = 10;
adamstark@46 304 }
adamstark@46 305
adamstark@46 306 bcounter++;
adamstark@46 307
adamstark@46 308 if (bcounter > new_bperiod)
adamstark@46 309 {
adamstark@46 310 bcounter = 1;
adamstark@46 311 }
adamstark@46 312 }
adamstark@46 313
adamstark@46 314 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46 315
adamstark@46 316 // beat is now
adamstark@58 317 beatCounter = 0;
adamstark@46 318
adamstark@46 319 // offbeat is half of new beat period away
adamstark@54 320 m0 = (int) round(((double) new_bperiod)/2);
adamstark@46 321 }
adamstark@46 322
adamstark@51 323 //=======================================================================
adamstark@57 324 void BTrack::fixTempo(double tempo)
adamstark@46 325 {
adamstark@46 326 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 327 while (tempo > 160)
adamstark@46 328 {
adamstark@46 329 tempo = tempo/2;
adamstark@46 330 }
adamstark@46 331
adamstark@46 332 while (tempo < 80)
adamstark@46 333 {
adamstark@46 334 tempo = tempo * 2;
adamstark@46 335 }
adamstark@46 336
adamstark@46 337 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 338 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 339
adamstark@46 340 // now set previous fixed previous tempo observation values to zero
adamstark@46 341 for (int i=0;i < 41;i++)
adamstark@46 342 {
adamstark@58 343 prevDeltaFixed[i] = 0;
adamstark@46 344 }
adamstark@46 345
adamstark@46 346 // set desired tempo index to 1
adamstark@58 347 prevDeltaFixed[tempo_index] = 1;
adamstark@46 348
adamstark@46 349 // set the tempo fix flag
adamstark@58 350 tempoFixed = true;
adamstark@46 351 }
adamstark@46 352
adamstark@51 353 //=======================================================================
adamstark@57 354 void BTrack::doNotFixTempo()
adamstark@46 355 {
adamstark@46 356 // set the tempo fix flag
adamstark@58 357 tempoFixed = false;
adamstark@46 358 }
adamstark@46 359
adamstark@51 360 //=======================================================================
adamstark@57 361 void BTrack::resampleOnsetDetectionFunction()
adamstark@46 362 {
adamstark@46 363 float output[512];
adamstark@89 364
adamstark@89 365
adamstark@58 366 float input[onsetDFBufferSize];
adamstark@54 367
adamstark@58 368 for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@54 369 {
adamstark@58 370 input[i] = (float) onsetDF[i];
adamstark@54 371 }
adamstark@89 372
adamstark@89 373 double src_ratio = 512.0/((double) onsetDFBufferSize);
adamstark@89 374 int BUFFER_LEN = onsetDFBufferSize;
adamstark@89 375 int output_len;
adamstark@89 376 SRC_DATA src_data ;
adamstark@89 377
adamstark@89 378 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@89 379 output_len = 512;
adamstark@89 380
adamstark@89 381 src_data.data_in = input;
adamstark@89 382 src_data.input_frames = BUFFER_LEN;
adamstark@89 383
adamstark@89 384 src_data.src_ratio = src_ratio;
adamstark@89 385
adamstark@89 386 src_data.data_out = output;
adamstark@89 387 src_data.output_frames = output_len;
adamstark@89 388
adamstark@89 389 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@89 390
adamstark@89 391 for (int i = 0;i < output_len;i++)
adamstark@89 392 {
adamstark@89 393 resampledOnsetDF[i] = (double) src_data.data_out[i];
adamstark@89 394 }
adamstark@46 395 }
adamstark@46 396
adamstark@51 397 //=======================================================================
adamstark@57 398 void BTrack::calculateTempo()
adamstark@46 399 {
adamstark@46 400 // adaptive threshold on input
adamstark@58 401 adaptiveThreshold(resampledOnsetDF,512);
adamstark@46 402
adamstark@46 403 // calculate auto-correlation function of detection function
adamstark@58 404 calculateBalancedACF(resampledOnsetDF);
adamstark@46 405
adamstark@46 406 // calculate output of comb filterbank
adamstark@57 407 calculateOutputOfCombFilterBank();
adamstark@46 408
adamstark@46 409
adamstark@46 410 // adaptive threshold on rcf
adamstark@58 411 adaptiveThreshold(combFilterBankOutput,128);
adamstark@46 412
adamstark@46 413
adamstark@46 414 int t_index;
adamstark@46 415 int t_index2;
adamstark@59 416 // calculate tempo observation vector from beat period observation vector
adamstark@46 417 for (int i = 0;i < 41;i++)
adamstark@46 418 {
adamstark@59 419 t_index = (int) round(tempoToLagFactor / ((double) ((2*i)+80)));
adamstark@59 420 t_index2 = (int) round(tempoToLagFactor / ((double) ((4*i)+160)));
adamstark@46 421
adamstark@46 422
adamstark@58 423 tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1];
adamstark@46 424 }
adamstark@46 425
adamstark@46 426
adamstark@54 427 double maxval;
adamstark@54 428 double maxind;
adamstark@54 429 double curval;
adamstark@46 430
adamstark@46 431 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@58 432 if (tempoFixed)
adamstark@46 433 {
adamstark@46 434 for (int k = 0;k < 41;k++)
adamstark@46 435 {
adamstark@58 436 prevDelta[k] = prevDeltaFixed[k];
adamstark@46 437 }
adamstark@46 438 }
adamstark@46 439
adamstark@46 440 for (int j=0;j < 41;j++)
adamstark@46 441 {
adamstark@46 442 maxval = -1;
adamstark@46 443 for (int i = 0;i < 41;i++)
adamstark@46 444 {
adamstark@58 445 curval = prevDelta[i]*tempoTransitionMatrix[i][j];
adamstark@46 446
adamstark@46 447 if (curval > maxval)
adamstark@46 448 {
adamstark@46 449 maxval = curval;
adamstark@46 450 }
adamstark@46 451 }
adamstark@46 452
adamstark@58 453 delta[j] = maxval*tempoObservationVector[j];
adamstark@46 454 }
adamstark@46 455
adamstark@46 456
adamstark@57 457 normaliseArray(delta,41);
adamstark@46 458
adamstark@46 459 maxind = -1;
adamstark@46 460 maxval = -1;
adamstark@46 461
adamstark@46 462 for (int j=0;j < 41;j++)
adamstark@46 463 {
adamstark@46 464 if (delta[j] > maxval)
adamstark@46 465 {
adamstark@46 466 maxval = delta[j];
adamstark@46 467 maxind = j;
adamstark@46 468 }
adamstark@46 469
adamstark@58 470 prevDelta[j] = delta[j];
adamstark@46 471 }
adamstark@46 472
adamstark@57 473 beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize)));
adamstark@46 474
adamstark@57 475 if (beatPeriod > 0)
adamstark@46 476 {
adamstark@58 477 estimatedTempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod);
adamstark@46 478 }
adamstark@46 479 }
adamstark@46 480
adamstark@51 481 //=======================================================================
adamstark@57 482 void BTrack::adaptiveThreshold(double *x,int N)
adamstark@46 483 {
adamstark@46 484 int i = 0;
adamstark@46 485 int k,t = 0;
adamstark@54 486 double x_thresh[N];
adamstark@46 487
adamstark@46 488 int p_post = 7;
adamstark@46 489 int p_pre = 8;
adamstark@46 490
adamstark@52 491 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46 492
adamstark@46 493 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46 494 for (i = 0;i <= t;i++)
adamstark@46 495 {
adamstark@52 496 k = std::min((i+p_pre),N);
adamstark@57 497 x_thresh[i] = calculateMeanOfArray(x,1,k);
adamstark@46 498 }
adamstark@46 499 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46 500 for (i = t+1;i < N-p_post;i++)
adamstark@46 501 {
adamstark@57 502 x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post);
adamstark@46 503 }
adamstark@46 504 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46 505 for (i = N-p_post;i < N;i++)
adamstark@46 506 {
adamstark@52 507 k = std::max((i-p_post),1);
adamstark@57 508 x_thresh[i] = calculateMeanOfArray(x,k,N);
adamstark@46 509 }
adamstark@46 510
adamstark@46 511 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@46 512 for (i = 0;i < N;i++)
adamstark@46 513 {
adamstark@46 514 x[i] = x[i] - x_thresh[i];
adamstark@46 515 if (x[i] < 0)
adamstark@46 516 {
adamstark@46 517 x[i] = 0;
adamstark@46 518 }
adamstark@46 519 }
adamstark@46 520 }
adamstark@46 521
adamstark@51 522 //=======================================================================
adamstark@57 523 void BTrack::calculateOutputOfCombFilterBank()
adamstark@46 524 {
adamstark@46 525 int numelem;
adamstark@46 526
adamstark@46 527 for (int i = 0;i < 128;i++)
adamstark@46 528 {
adamstark@58 529 combFilterBankOutput[i] = 0;
adamstark@46 530 }
adamstark@46 531
adamstark@46 532 numelem = 4;
adamstark@46 533
adamstark@46 534 for (int i = 2;i <= 127;i++) // max beat period
adamstark@46 535 {
adamstark@46 536 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@46 537 {
adamstark@46 538 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@46 539 {
adamstark@58 540 combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46 541 }
adamstark@46 542 }
adamstark@46 543 }
adamstark@46 544 }
adamstark@46 545
adamstark@51 546 //=======================================================================
adamstark@60 547 void BTrack::calculateBalancedACF(double *onsetDetectionFunction)
adamstark@46 548 {
adamstark@88 549 int onsetDetectionFunctionLength = 512;
adamstark@88 550
adamstark@88 551 // copy into complex array and zero pad
adamstark@88 552 for (int i = 0;i < FFTLengthForACFCalculation;i++)
adamstark@88 553 {
adamstark@88 554 if (i < onsetDetectionFunctionLength)
adamstark@88 555 {
adamstark@88 556 complexIn[i][0] = onsetDetectionFunction[i];
adamstark@88 557 complexIn[i][1] = 0.0;
adamstark@88 558 }
adamstark@88 559 else
adamstark@88 560 {
adamstark@88 561 complexIn[i][0] = 0.0;
adamstark@88 562 complexIn[i][1] = 0.0;
adamstark@88 563 }
adamstark@88 564 }
adamstark@88 565
adamstark@88 566 // perform the fft
adamstark@88 567 fftw_execute(acfForwardFFT);
adamstark@88 568
adamstark@88 569 // multiply by complex conjugate
adamstark@88 570 for (int i = 0;i < FFTLengthForACFCalculation;i++)
adamstark@88 571 {
adamstark@88 572 complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
adamstark@88 573 complexOut[i][1] = 0.0;
adamstark@88 574 }
adamstark@88 575
adamstark@88 576 // perform the ifft
adamstark@88 577 fftw_execute(acfBackwardFFT);
adamstark@88 578
adamstark@88 579
adamstark@88 580 double lag = 512;
adamstark@88 581
adamstark@88 582 for (int i = 0;i < 512;i++)
adamstark@88 583 {
adamstark@88 584 // calculate absolute value of result
adamstark@88 585 double absValue = sqrt(complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
adamstark@88 586
adamstark@88 587 // divide by inverse lad to deal with scale bias towards small lags
adamstark@88 588 acf[i] = absValue / lag;
adamstark@88 589
adamstark@88 590 // this division by 1024 is technically unnecessary but it ensures the algorithm produces
adamstark@88 591 // exactly the same ACF output as the old time domain implementation. The time difference is
adamstark@88 592 // minimal so I decided to keep it
adamstark@88 593 acf[i] = acf[i] / 1024.;
adamstark@88 594
adamstark@88 595 lag = lag - 1.;
adamstark@88 596 }
adamstark@46 597 }
adamstark@46 598
adamstark@51 599 //=======================================================================
adamstark@59 600 double BTrack::calculateMeanOfArray(double *array,int startIndex,int endIndex)
adamstark@46 601 {
adamstark@46 602 int i;
adamstark@47 603 double sum = 0;
adamstark@47 604
adamstark@59 605 int length = endIndex - startIndex;
adamstark@46 606
adamstark@46 607 // find sum
adamstark@59 608 for (i = startIndex;i < endIndex;i++)
adamstark@46 609 {
adamstark@46 610 sum = sum + array[i];
adamstark@46 611 }
adamstark@46 612
adamstark@47 613 if (length > 0)
adamstark@47 614 {
adamstark@47 615 return sum / length; // average and return
adamstark@47 616 }
adamstark@47 617 else
adamstark@47 618 {
adamstark@47 619 return 0;
adamstark@47 620 }
adamstark@46 621 }
adamstark@46 622
adamstark@51 623 //=======================================================================
adamstark@57 624 void BTrack::normaliseArray(double *array,int N)
adamstark@46 625 {
adamstark@46 626 double sum = 0;
adamstark@46 627
adamstark@46 628 for (int i = 0;i < N;i++)
adamstark@46 629 {
adamstark@46 630 if (array[i] > 0)
adamstark@46 631 {
adamstark@46 632 sum = sum + array[i];
adamstark@46 633 }
adamstark@46 634 }
adamstark@46 635
adamstark@46 636 if (sum > 0)
adamstark@46 637 {
adamstark@46 638 for (int i = 0;i < N;i++)
adamstark@46 639 {
adamstark@46 640 array[i] = array[i] / sum;
adamstark@46 641 }
adamstark@46 642 }
adamstark@46 643 }
adamstark@46 644
adamstark@51 645 //=======================================================================
adamstark@59 646 void BTrack::updateCumulativeScore(double odfSample)
adamstark@46 647 {
adamstark@46 648 int start, end, winsize;
adamstark@54 649 double max;
adamstark@46 650
adamstark@58 651 start = onsetDFBufferSize - round(2*beatPeriod);
adamstark@58 652 end = onsetDFBufferSize - round(beatPeriod/2);
adamstark@46 653 winsize = end-start+1;
adamstark@46 654
adamstark@54 655 double w1[winsize];
adamstark@57 656 double v = -2*beatPeriod;
adamstark@54 657 double wcumscore;
adamstark@46 658
adamstark@46 659
adamstark@46 660 // create window
adamstark@46 661 for (int i = 0;i < winsize;i++)
adamstark@46 662 {
adamstark@57 663 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46 664 v = v+1;
adamstark@46 665 }
adamstark@46 666
adamstark@46 667 // calculate new cumulative score value
adamstark@46 668 max = 0;
adamstark@46 669 int n = 0;
adamstark@46 670 for (int i=start;i <= end;i++)
adamstark@46 671 {
adamstark@58 672 wcumscore = cumulativeScore[i]*w1[n];
adamstark@46 673
adamstark@46 674 if (wcumscore > max)
adamstark@46 675 {
adamstark@46 676 max = wcumscore;
adamstark@46 677 }
adamstark@46 678 n++;
adamstark@46 679 }
adamstark@46 680
adamstark@90 681
adamstark@89 682 latestCumulativeScoreValue = ((1-alpha)*odfSample) + (alpha*max);
adamstark@89 683
adamstark@89 684 cumulativeScore.addSampleToEnd(latestCumulativeScoreValue);
adamstark@46 685 }
adamstark@46 686
adamstark@51 687 //=======================================================================
adamstark@57 688 void BTrack::predictBeat()
adamstark@46 689 {
adamstark@58 690 int windowSize = (int) beatPeriod;
adamstark@58 691 double futureCumulativeScore[onsetDFBufferSize + windowSize];
adamstark@58 692 double w2[windowSize];
adamstark@46 693 // copy cumscore to first part of fcumscore
adamstark@58 694 for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@46 695 {
adamstark@58 696 futureCumulativeScore[i] = cumulativeScore[i];
adamstark@46 697 }
adamstark@46 698
adamstark@46 699 // create future window
adamstark@54 700 double v = 1;
adamstark@58 701 for (int i = 0;i < windowSize;i++)
adamstark@46 702 {
adamstark@57 703 w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
adamstark@46 704 v++;
adamstark@46 705 }
adamstark@46 706
adamstark@46 707 // create past window
adamstark@57 708 v = -2*beatPeriod;
adamstark@58 709 int start = onsetDFBufferSize - round(2*beatPeriod);
adamstark@58 710 int end = onsetDFBufferSize - round(beatPeriod/2);
adamstark@46 711 int pastwinsize = end-start+1;
adamstark@54 712 double w1[pastwinsize];
adamstark@46 713
adamstark@46 714 for (int i = 0;i < pastwinsize;i++)
adamstark@46 715 {
adamstark@57 716 w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46 717 v = v+1;
adamstark@46 718 }
adamstark@46 719
adamstark@46 720
adamstark@46 721
adamstark@46 722 // calculate future cumulative score
adamstark@54 723 double max;
adamstark@46 724 int n;
adamstark@54 725 double wcumscore;
adamstark@58 726 for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++)
adamstark@46 727 {
adamstark@57 728 start = i - round(2*beatPeriod);
adamstark@57 729 end = i - round(beatPeriod/2);
adamstark@46 730
adamstark@46 731 max = 0;
adamstark@46 732 n = 0;
adamstark@46 733 for (int k=start;k <= end;k++)
adamstark@46 734 {
adamstark@58 735 wcumscore = futureCumulativeScore[k]*w1[n];
adamstark@46 736
adamstark@46 737 if (wcumscore > max)
adamstark@46 738 {
adamstark@46 739 max = wcumscore;
adamstark@46 740 }
adamstark@46 741 n++;
adamstark@46 742 }
adamstark@46 743
adamstark@58 744 futureCumulativeScore[i] = max;
adamstark@46 745 }
adamstark@46 746
adamstark@46 747
adamstark@46 748 // predict beat
adamstark@46 749 max = 0;
adamstark@46 750 n = 0;
adamstark@46 751
adamstark@58 752 for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++)
adamstark@46 753 {
adamstark@58 754 wcumscore = futureCumulativeScore[i]*w2[n];
adamstark@46 755
adamstark@46 756 if (wcumscore > max)
adamstark@46 757 {
adamstark@46 758 max = wcumscore;
adamstark@58 759 beatCounter = n;
adamstark@46 760 }
adamstark@46 761
adamstark@46 762 n++;
adamstark@46 763 }
adamstark@46 764
adamstark@46 765 // set next prediction time
adamstark@58 766 m0 = beatCounter+round(beatPeriod/2);
adamstark@46 767
adamstark@46 768
adamstark@46 769 }