adamstark@46: //=======================================================================
adamstark@46: /** @file BTrack.cpp
adamstark@47: * @brief BTrack - a real-time beat tracker
adamstark@46: * @author Adam Stark
adamstark@46: * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46: *
adamstark@46: * This program is free software: you can redistribute it and/or modify
adamstark@46: * it under the terms of the GNU General Public License as published by
adamstark@46: * the Free Software Foundation, either version 3 of the License, or
adamstark@46: * (at your option) any later version.
adamstark@46: *
adamstark@46: * This program is distributed in the hope that it will be useful,
adamstark@46: * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46: * GNU General Public License for more details.
adamstark@46: *
adamstark@46: * You should have received a copy of the GNU General Public License
adamstark@46: * along with this program. If not, see .
adamstark@46: */
adamstark@46: //=======================================================================
adamstark@46:
adamstark@46: #include
adamstark@52: #include
adamstark@46: #include "BTrack.h"
adamstark@46: #include "samplerate.h"
adamstark@89: #include
adamstark@46:
adamstark@55: //=======================================================================
adamstark@57: BTrack::BTrack() : odf(512,1024,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@55: {
adamstark@55: initialise(512, 1024);
adamstark@55: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: BTrack::BTrack(int hopSize_) : odf(hopSize_,2*hopSize_,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@46: {
adamstark@57: initialise(hopSize_, 2*hopSize_);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@57: BTrack::BTrack(int hopSize_,int frameSize_) : odf(hopSize_,frameSize_,ComplexSpectralDifferenceHWR,HanningWindow)
adamstark@55: {
adamstark@57: initialise(hopSize_, frameSize_);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@88: BTrack::~BTrack()
adamstark@88: {
adamstark@88: // destroy fft plan
adamstark@88: fftw_destroy_plan(acfForwardFFT);
adamstark@88: fftw_destroy_plan(acfBackwardFFT);
adamstark@88: fftw_free(complexIn);
adamstark@88: fftw_free(complexOut);
adamstark@88: }
adamstark@88:
adamstark@88: //=======================================================================
adamstark@55: double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs)
adamstark@55: {
adamstark@55: double hop = (double) hopSize;
adamstark@55: double samplingFrequency = (double) fs;
adamstark@55: double frameNum = (double) frameNumber;
adamstark@55:
adamstark@55: return ((hop / samplingFrequency) * frameNum);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@55: double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs)
adamstark@55: {
adamstark@55: long frameNum = (long) frameNumber;
adamstark@55:
adamstark@55: return getBeatTimeInSeconds(frameNum, hopSize, fs);
adamstark@55: }
adamstark@55:
adamstark@55:
adamstark@55:
adamstark@55: //=======================================================================
adamstark@57: void BTrack::initialise(int hopSize_, int frameSize_)
adamstark@55: {
adamstark@55: double rayparam = 43;
adamstark@54: double pi = 3.14159265;
adamstark@46:
adamstark@46:
adamstark@46: // initialise parameters
adamstark@46: tightness = 5;
adamstark@46: alpha = 0.9;
adamstark@46: tempo = 120;
adamstark@58: estimatedTempo = 120.0;
adamstark@59: tempoToLagFactor = 60.*44100./512.;
adamstark@46:
adamstark@46: m0 = 10;
adamstark@58: beatCounter = -1;
adamstark@46:
adamstark@57: beatDueInFrame = false;
adamstark@46:
adamstark@58:
adamstark@46: // create rayleigh weighting vector
adamstark@46: for (int n = 0;n < 128;n++)
adamstark@46: {
adamstark@58: weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
adamstark@46: }
adamstark@46:
adamstark@46: // initialise prev_delta
adamstark@46: for (int i = 0;i < 41;i++)
adamstark@46: {
adamstark@58: prevDelta[i] = 1;
adamstark@46: }
adamstark@46:
adamstark@54: double t_mu = 41/2;
adamstark@54: double m_sig;
adamstark@54: double x;
adamstark@46: // create tempo transition matrix
adamstark@46: m_sig = 41/8;
adamstark@46: for (int i = 0;i < 41;i++)
adamstark@46: {
adamstark@46: for (int j = 0;j < 41;j++)
adamstark@46: {
adamstark@46: x = j+1;
adamstark@46: t_mu = i+1;
adamstark@58: tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46: }
adamstark@55: }
adamstark@46:
adamstark@46: // tempo is not fixed
adamstark@58: tempoFixed = false;
adamstark@58:
adamstark@58: // initialise latest cumulative score value
adamstark@58: // in case it is requested before any processing takes place
adamstark@58: latestCumulativeScoreValue = 0;
adamstark@55:
adamstark@55: // initialise algorithm given the hopsize
adamstark@57: setHopSize(hopSize_);
adamstark@88:
adamstark@88:
adamstark@88: // Set up FFT for calculating the auto-correlation function
adamstark@88: FFTLengthForACFCalculation = 1024;
adamstark@88:
adamstark@88: complexIn = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@88: complexOut = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data
adamstark@88:
adamstark@88: acfForwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@88: acfBackwardFFT = fftw_plan_dft_1d(FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::setHopSize(int hopSize_)
adamstark@46: {
adamstark@57: hopSize = hopSize_;
adamstark@58: onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size
adamstark@46:
adamstark@57: beatPeriod = round(60/((((double) hopSize)/44100)*tempo));
adamstark@63:
adamstark@63: // set size of onset detection function buffer
adamstark@63: onsetDF.resize(onsetDFBufferSize);
adamstark@63:
adamstark@63: // set size of cumulative score buffer
adamstark@63: cumulativeScore.resize(onsetDFBufferSize);
adamstark@46:
adamstark@46: // initialise df_buffer to zeros
adamstark@58: for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@46: {
adamstark@58: onsetDF[i] = 0;
adamstark@58: cumulativeScore[i] = 0;
adamstark@46:
adamstark@46:
adamstark@57: if ((i % ((int) round(beatPeriod))) == 0)
adamstark@46: {
adamstark@58: onsetDF[i] = 1;
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@65: void BTrack::updateHopAndFrameSize(int hopSize_,int frameSize_)
adamstark@65: {
adamstark@65: // update the onset detection function object
adamstark@66: odf.initialise(hopSize_, frameSize_);
adamstark@65:
adamstark@65: // update the hop size being used by the beat tracker
adamstark@65: setHopSize(hopSize_);
adamstark@65: }
adamstark@65:
adamstark@65: //=======================================================================
adamstark@57: bool BTrack::beatDueInCurrentFrame()
adamstark@57: {
adamstark@57: return beatDueInFrame;
adamstark@57: }
adamstark@57:
adamstark@57: //=======================================================================
adamstark@78: double BTrack::getCurrentTempoEstimate()
adamstark@78: {
adamstark@78: return estimatedTempo;
adamstark@78: }
adamstark@78:
adamstark@78: //=======================================================================
adamstark@57: int BTrack::getHopSize()
adamstark@57: {
adamstark@57: return hopSize;
adamstark@57: }
adamstark@57:
adamstark@57: //=======================================================================
adamstark@58: double BTrack::getLatestCumulativeScoreValue()
adamstark@58: {
adamstark@58: return latestCumulativeScoreValue;
adamstark@58: }
adamstark@58:
adamstark@58: //=======================================================================
adamstark@55: void BTrack::processAudioFrame(double *frame)
adamstark@55: {
adamstark@55: // calculate the onset detection function sample for the frame
adamstark@59: double sample = odf.calculateOnsetDetectionFunctionSample(frame);
adamstark@55:
adamstark@56:
adamstark@55:
adamstark@55: // process the new onset detection function sample in the beat tracking algorithm
adamstark@55: processOnsetDetectionFunctionSample(sample);
adamstark@55: }
adamstark@55:
adamstark@55: //=======================================================================
adamstark@55: void BTrack::processOnsetDetectionFunctionSample(double newSample)
adamstark@56: {
adamstark@56: // we need to ensure that the onset
adamstark@56: // detection function sample is positive
adamstark@56: newSample = fabs(newSample);
adamstark@56:
adamstark@56: // add a tiny constant to the sample to stop it from ever going
adamstark@56: // to zero. this is to avoid problems further down the line
adamstark@56: newSample = newSample + 0.0001;
adamstark@56:
adamstark@46: m0--;
adamstark@58: beatCounter--;
adamstark@57: beatDueInFrame = false;
adamstark@90:
adamstark@46: // add new sample at the end
adamstark@89: onsetDF.addSampleToEnd(newSample);
adamstark@46:
adamstark@46: // update cumulative score
adamstark@57: updateCumulativeScore(newSample);
adamstark@46:
adamstark@46: // if we are halfway between beats
adamstark@46: if (m0 == 0)
adamstark@46: {
adamstark@57: predictBeat();
adamstark@46: }
adamstark@46:
adamstark@46: // if we are at a beat
adamstark@58: if (beatCounter == 0)
adamstark@46: {
adamstark@57: beatDueInFrame = true; // indicate a beat should be output
adamstark@46:
adamstark@46: // recalculate the tempo
adamstark@57: resampleOnsetDetectionFunction();
adamstark@57: calculateTempo();
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::setTempo(double tempo)
adamstark@46: {
adamstark@46:
adamstark@46: /////////// TEMPO INDICATION RESET //////////////////
adamstark@46:
adamstark@46: // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46: while (tempo > 160)
adamstark@46: {
adamstark@46: tempo = tempo/2;
adamstark@46: }
adamstark@46:
adamstark@46: while (tempo < 80)
adamstark@46: {
adamstark@46: tempo = tempo * 2;
adamstark@46: }
adamstark@46:
adamstark@46: // convert tempo from bpm value to integer index of tempo probability
adamstark@46: int tempo_index = (int) round((tempo - 80)/2);
adamstark@46:
adamstark@46: // now set previous tempo observations to zero
adamstark@46: for (int i=0;i < 41;i++)
adamstark@46: {
adamstark@58: prevDelta[i] = 0;
adamstark@46: }
adamstark@46:
adamstark@46: // set desired tempo index to 1
adamstark@58: prevDelta[tempo_index] = 1;
adamstark@46:
adamstark@46:
adamstark@46: /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46:
adamstark@46: // calculate new beat period
adamstark@57: int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo));
adamstark@46:
adamstark@46: int bcounter = 1;
adamstark@46: // initialise df_buffer to zeros
adamstark@58: for (int i = (onsetDFBufferSize-1);i >= 0;i--)
adamstark@46: {
adamstark@46: if (bcounter == 1)
adamstark@46: {
adamstark@58: cumulativeScore[i] = 150;
adamstark@58: onsetDF[i] = 150;
adamstark@46: }
adamstark@46: else
adamstark@46: {
adamstark@58: cumulativeScore[i] = 10;
adamstark@58: onsetDF[i] = 10;
adamstark@46: }
adamstark@46:
adamstark@46: bcounter++;
adamstark@46:
adamstark@46: if (bcounter > new_bperiod)
adamstark@46: {
adamstark@46: bcounter = 1;
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@46: /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46:
adamstark@46: // beat is now
adamstark@58: beatCounter = 0;
adamstark@46:
adamstark@46: // offbeat is half of new beat period away
adamstark@54: m0 = (int) round(((double) new_bperiod)/2);
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::fixTempo(double tempo)
adamstark@46: {
adamstark@46: // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46: while (tempo > 160)
adamstark@46: {
adamstark@46: tempo = tempo/2;
adamstark@46: }
adamstark@46:
adamstark@46: while (tempo < 80)
adamstark@46: {
adamstark@46: tempo = tempo * 2;
adamstark@46: }
adamstark@46:
adamstark@46: // convert tempo from bpm value to integer index of tempo probability
adamstark@46: int tempo_index = (int) round((tempo - 80)/2);
adamstark@46:
adamstark@46: // now set previous fixed previous tempo observation values to zero
adamstark@46: for (int i=0;i < 41;i++)
adamstark@46: {
adamstark@58: prevDeltaFixed[i] = 0;
adamstark@46: }
adamstark@46:
adamstark@46: // set desired tempo index to 1
adamstark@58: prevDeltaFixed[tempo_index] = 1;
adamstark@46:
adamstark@46: // set the tempo fix flag
adamstark@58: tempoFixed = true;
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::doNotFixTempo()
adamstark@46: {
adamstark@46: // set the tempo fix flag
adamstark@58: tempoFixed = false;
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::resampleOnsetDetectionFunction()
adamstark@46: {
adamstark@46: float output[512];
adamstark@89:
adamstark@89:
adamstark@58: float input[onsetDFBufferSize];
adamstark@54:
adamstark@58: for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@54: {
adamstark@58: input[i] = (float) onsetDF[i];
adamstark@54: }
adamstark@89:
adamstark@89: double src_ratio = 512.0/((double) onsetDFBufferSize);
adamstark@89: int BUFFER_LEN = onsetDFBufferSize;
adamstark@89: int output_len;
adamstark@89: SRC_DATA src_data ;
adamstark@89:
adamstark@89: //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@89: output_len = 512;
adamstark@89:
adamstark@89: src_data.data_in = input;
adamstark@89: src_data.input_frames = BUFFER_LEN;
adamstark@89:
adamstark@89: src_data.src_ratio = src_ratio;
adamstark@89:
adamstark@89: src_data.data_out = output;
adamstark@89: src_data.output_frames = output_len;
adamstark@89:
adamstark@89: src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@89:
adamstark@89: for (int i = 0;i < output_len;i++)
adamstark@89: {
adamstark@89: resampledOnsetDF[i] = (double) src_data.data_out[i];
adamstark@89: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::calculateTempo()
adamstark@46: {
adamstark@46: // adaptive threshold on input
adamstark@58: adaptiveThreshold(resampledOnsetDF,512);
adamstark@46:
adamstark@46: // calculate auto-correlation function of detection function
adamstark@58: calculateBalancedACF(resampledOnsetDF);
adamstark@46:
adamstark@46: // calculate output of comb filterbank
adamstark@57: calculateOutputOfCombFilterBank();
adamstark@46:
adamstark@46:
adamstark@46: // adaptive threshold on rcf
adamstark@58: adaptiveThreshold(combFilterBankOutput,128);
adamstark@46:
adamstark@46:
adamstark@46: int t_index;
adamstark@46: int t_index2;
adamstark@59: // calculate tempo observation vector from beat period observation vector
adamstark@46: for (int i = 0;i < 41;i++)
adamstark@46: {
adamstark@59: t_index = (int) round(tempoToLagFactor / ((double) ((2*i)+80)));
adamstark@59: t_index2 = (int) round(tempoToLagFactor / ((double) ((4*i)+160)));
adamstark@46:
adamstark@46:
adamstark@58: tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1];
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@54: double maxval;
adamstark@54: double maxind;
adamstark@54: double curval;
adamstark@46:
adamstark@46: // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@58: if (tempoFixed)
adamstark@46: {
adamstark@46: for (int k = 0;k < 41;k++)
adamstark@46: {
adamstark@58: prevDelta[k] = prevDeltaFixed[k];
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@46: for (int j=0;j < 41;j++)
adamstark@46: {
adamstark@46: maxval = -1;
adamstark@46: for (int i = 0;i < 41;i++)
adamstark@46: {
adamstark@58: curval = prevDelta[i]*tempoTransitionMatrix[i][j];
adamstark@46:
adamstark@46: if (curval > maxval)
adamstark@46: {
adamstark@46: maxval = curval;
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@58: delta[j] = maxval*tempoObservationVector[j];
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@57: normaliseArray(delta,41);
adamstark@46:
adamstark@46: maxind = -1;
adamstark@46: maxval = -1;
adamstark@46:
adamstark@46: for (int j=0;j < 41;j++)
adamstark@46: {
adamstark@46: if (delta[j] > maxval)
adamstark@46: {
adamstark@46: maxval = delta[j];
adamstark@46: maxind = j;
adamstark@46: }
adamstark@46:
adamstark@58: prevDelta[j] = delta[j];
adamstark@46: }
adamstark@46:
adamstark@57: beatPeriod = round((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize)));
adamstark@46:
adamstark@57: if (beatPeriod > 0)
adamstark@46: {
adamstark@58: estimatedTempo = 60.0/((((double) hopSize) / 44100.0)*beatPeriod);
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::adaptiveThreshold(double *x,int N)
adamstark@46: {
adamstark@46: int i = 0;
adamstark@46: int k,t = 0;
adamstark@54: double x_thresh[N];
adamstark@46:
adamstark@46: int p_post = 7;
adamstark@46: int p_pre = 8;
adamstark@46:
adamstark@52: t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46:
adamstark@46: // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46: for (i = 0;i <= t;i++)
adamstark@46: {
adamstark@52: k = std::min((i+p_pre),N);
adamstark@57: x_thresh[i] = calculateMeanOfArray(x,1,k);
adamstark@46: }
adamstark@46: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46: for (i = t+1;i < N-p_post;i++)
adamstark@46: {
adamstark@57: x_thresh[i] = calculateMeanOfArray(x,i-p_pre,i+p_post);
adamstark@46: }
adamstark@46: // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46: for (i = N-p_post;i < N;i++)
adamstark@46: {
adamstark@52: k = std::max((i-p_post),1);
adamstark@57: x_thresh[i] = calculateMeanOfArray(x,k,N);
adamstark@46: }
adamstark@46:
adamstark@46: // subtract the threshold from the detection function and check that it is not less than 0
adamstark@46: for (i = 0;i < N;i++)
adamstark@46: {
adamstark@46: x[i] = x[i] - x_thresh[i];
adamstark@46: if (x[i] < 0)
adamstark@46: {
adamstark@46: x[i] = 0;
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::calculateOutputOfCombFilterBank()
adamstark@46: {
adamstark@46: int numelem;
adamstark@46:
adamstark@46: for (int i = 0;i < 128;i++)
adamstark@46: {
adamstark@58: combFilterBankOutput[i] = 0;
adamstark@46: }
adamstark@46:
adamstark@46: numelem = 4;
adamstark@46:
adamstark@46: for (int i = 2;i <= 127;i++) // max beat period
adamstark@46: {
adamstark@46: for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@46: {
adamstark@46: for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@46: {
adamstark@58: combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@60: void BTrack::calculateBalancedACF(double *onsetDetectionFunction)
adamstark@46: {
adamstark@88: int onsetDetectionFunctionLength = 512;
adamstark@88:
adamstark@88: // copy into complex array and zero pad
adamstark@88: for (int i = 0;i < FFTLengthForACFCalculation;i++)
adamstark@88: {
adamstark@88: if (i < onsetDetectionFunctionLength)
adamstark@88: {
adamstark@88: complexIn[i][0] = onsetDetectionFunction[i];
adamstark@88: complexIn[i][1] = 0.0;
adamstark@88: }
adamstark@88: else
adamstark@88: {
adamstark@88: complexIn[i][0] = 0.0;
adamstark@88: complexIn[i][1] = 0.0;
adamstark@88: }
adamstark@88: }
adamstark@88:
adamstark@88: // perform the fft
adamstark@88: fftw_execute(acfForwardFFT);
adamstark@88:
adamstark@88: // multiply by complex conjugate
adamstark@88: for (int i = 0;i < FFTLengthForACFCalculation;i++)
adamstark@88: {
adamstark@88: complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1];
adamstark@88: complexOut[i][1] = 0.0;
adamstark@88: }
adamstark@88:
adamstark@88: // perform the ifft
adamstark@88: fftw_execute(acfBackwardFFT);
adamstark@88:
adamstark@88:
adamstark@88: double lag = 512;
adamstark@88:
adamstark@88: for (int i = 0;i < 512;i++)
adamstark@88: {
adamstark@88: // calculate absolute value of result
adamstark@88: double absValue = sqrt(complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]);
adamstark@88:
adamstark@88: // divide by inverse lad to deal with scale bias towards small lags
adamstark@88: acf[i] = absValue / lag;
adamstark@88:
adamstark@88: // this division by 1024 is technically unnecessary but it ensures the algorithm produces
adamstark@88: // exactly the same ACF output as the old time domain implementation. The time difference is
adamstark@88: // minimal so I decided to keep it
adamstark@88: acf[i] = acf[i] / 1024.;
adamstark@88:
adamstark@88: lag = lag - 1.;
adamstark@88: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@59: double BTrack::calculateMeanOfArray(double *array,int startIndex,int endIndex)
adamstark@46: {
adamstark@46: int i;
adamstark@47: double sum = 0;
adamstark@47:
adamstark@59: int length = endIndex - startIndex;
adamstark@46:
adamstark@46: // find sum
adamstark@59: for (i = startIndex;i < endIndex;i++)
adamstark@46: {
adamstark@46: sum = sum + array[i];
adamstark@46: }
adamstark@46:
adamstark@47: if (length > 0)
adamstark@47: {
adamstark@47: return sum / length; // average and return
adamstark@47: }
adamstark@47: else
adamstark@47: {
adamstark@47: return 0;
adamstark@47: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::normaliseArray(double *array,int N)
adamstark@46: {
adamstark@46: double sum = 0;
adamstark@46:
adamstark@46: for (int i = 0;i < N;i++)
adamstark@46: {
adamstark@46: if (array[i] > 0)
adamstark@46: {
adamstark@46: sum = sum + array[i];
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@46: if (sum > 0)
adamstark@46: {
adamstark@46: for (int i = 0;i < N;i++)
adamstark@46: {
adamstark@46: array[i] = array[i] / sum;
adamstark@46: }
adamstark@46: }
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@59: void BTrack::updateCumulativeScore(double odfSample)
adamstark@46: {
adamstark@46: int start, end, winsize;
adamstark@54: double max;
adamstark@46:
adamstark@58: start = onsetDFBufferSize - round(2*beatPeriod);
adamstark@58: end = onsetDFBufferSize - round(beatPeriod/2);
adamstark@46: winsize = end-start+1;
adamstark@46:
adamstark@54: double w1[winsize];
adamstark@57: double v = -2*beatPeriod;
adamstark@54: double wcumscore;
adamstark@46:
adamstark@46:
adamstark@46: // create window
adamstark@46: for (int i = 0;i < winsize;i++)
adamstark@46: {
adamstark@57: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46: v = v+1;
adamstark@46: }
adamstark@46:
adamstark@46: // calculate new cumulative score value
adamstark@46: max = 0;
adamstark@46: int n = 0;
adamstark@46: for (int i=start;i <= end;i++)
adamstark@46: {
adamstark@58: wcumscore = cumulativeScore[i]*w1[n];
adamstark@46:
adamstark@46: if (wcumscore > max)
adamstark@46: {
adamstark@46: max = wcumscore;
adamstark@46: }
adamstark@46: n++;
adamstark@46: }
adamstark@46:
adamstark@90:
adamstark@89: latestCumulativeScoreValue = ((1-alpha)*odfSample) + (alpha*max);
adamstark@89:
adamstark@89: cumulativeScore.addSampleToEnd(latestCumulativeScoreValue);
adamstark@46: }
adamstark@46:
adamstark@51: //=======================================================================
adamstark@57: void BTrack::predictBeat()
adamstark@46: {
adamstark@58: int windowSize = (int) beatPeriod;
adamstark@58: double futureCumulativeScore[onsetDFBufferSize + windowSize];
adamstark@58: double w2[windowSize];
adamstark@46: // copy cumscore to first part of fcumscore
adamstark@58: for (int i = 0;i < onsetDFBufferSize;i++)
adamstark@46: {
adamstark@58: futureCumulativeScore[i] = cumulativeScore[i];
adamstark@46: }
adamstark@46:
adamstark@46: // create future window
adamstark@54: double v = 1;
adamstark@58: for (int i = 0;i < windowSize;i++)
adamstark@46: {
adamstark@57: w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2)));
adamstark@46: v++;
adamstark@46: }
adamstark@46:
adamstark@46: // create past window
adamstark@57: v = -2*beatPeriod;
adamstark@58: int start = onsetDFBufferSize - round(2*beatPeriod);
adamstark@58: int end = onsetDFBufferSize - round(beatPeriod/2);
adamstark@46: int pastwinsize = end-start+1;
adamstark@54: double w1[pastwinsize];
adamstark@46:
adamstark@46: for (int i = 0;i < pastwinsize;i++)
adamstark@46: {
adamstark@57: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2);
adamstark@46: v = v+1;
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@46:
adamstark@46: // calculate future cumulative score
adamstark@54: double max;
adamstark@46: int n;
adamstark@54: double wcumscore;
adamstark@58: for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++)
adamstark@46: {
adamstark@57: start = i - round(2*beatPeriod);
adamstark@57: end = i - round(beatPeriod/2);
adamstark@46:
adamstark@46: max = 0;
adamstark@46: n = 0;
adamstark@46: for (int k=start;k <= end;k++)
adamstark@46: {
adamstark@58: wcumscore = futureCumulativeScore[k]*w1[n];
adamstark@46:
adamstark@46: if (wcumscore > max)
adamstark@46: {
adamstark@46: max = wcumscore;
adamstark@46: }
adamstark@46: n++;
adamstark@46: }
adamstark@46:
adamstark@58: futureCumulativeScore[i] = max;
adamstark@46: }
adamstark@46:
adamstark@46:
adamstark@46: // predict beat
adamstark@46: max = 0;
adamstark@46: n = 0;
adamstark@46:
adamstark@58: for (int i = onsetDFBufferSize;i < (onsetDFBufferSize+windowSize);i++)
adamstark@46: {
adamstark@58: wcumscore = futureCumulativeScore[i]*w2[n];
adamstark@46:
adamstark@46: if (wcumscore > max)
adamstark@46: {
adamstark@46: max = wcumscore;
adamstark@58: beatCounter = n;
adamstark@46: }
adamstark@46:
adamstark@46: n++;
adamstark@46: }
adamstark@46:
adamstark@46: // set next prediction time
adamstark@58: m0 = beatCounter+round(beatPeriod/2);
adamstark@46:
adamstark@46:
adamstark@46: }