adamstark@46: //======================================================================= adamstark@46: /** @file BTrack.cpp adamstark@47: * @brief BTrack - a real-time beat tracker adamstark@46: * @author Adam Stark adamstark@46: * @copyright Copyright (C) 2008-2014 Queen Mary University of London adamstark@46: * adamstark@46: * This program is free software: you can redistribute it and/or modify adamstark@46: * it under the terms of the GNU General Public License as published by adamstark@46: * the Free Software Foundation, either version 3 of the License, or adamstark@46: * (at your option) any later version. adamstark@46: * adamstark@46: * This program is distributed in the hope that it will be useful, adamstark@46: * but WITHOUT ANY WARRANTY; without even the implied warranty of adamstark@46: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the adamstark@46: * GNU General Public License for more details. adamstark@46: * adamstark@46: * You should have received a copy of the GNU General Public License adamstark@46: * along with this program. If not, see . adamstark@46: */ adamstark@46: //======================================================================= adamstark@46: adamstark@46: #include adamstark@52: #include adamstark@46: #include "BTrack.h" adamstark@46: #include "samplerate.h" adamstark@89: #include adamstark@46: adamstark@55: //======================================================================= adamstark@91: BTrack::BTrack() adamstark@91: : odf (512, 1024, ComplexSpectralDifferenceHWR, HanningWindow) adamstark@55: { adamstark@55: initialise(512, 1024); adamstark@55: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: BTrack::BTrack (int hopSize_) adamstark@91: : odf(hopSize_, 2*hopSize_, ComplexSpectralDifferenceHWR, HanningWindow) adamstark@46: { adamstark@57: initialise(hopSize_, 2*hopSize_); adamstark@55: } adamstark@55: adamstark@55: //======================================================================= adamstark@91: BTrack::BTrack (int hopSize_, int frameSize_) adamstark@91: : odf (hopSize_, frameSize_, ComplexSpectralDifferenceHWR, HanningWindow) adamstark@55: { adamstark@91: initialise (hopSize_, frameSize_); adamstark@55: } adamstark@55: adamstark@55: //======================================================================= adamstark@88: BTrack::~BTrack() adamstark@88: { adamstark@88: // destroy fft plan adamstark@91: fftw_destroy_plan (acfForwardFFT); adamstark@91: fftw_destroy_plan (acfBackwardFFT); adamstark@91: fftw_free (complexIn); adamstark@91: fftw_free (complexOut); adamstark@88: } adamstark@88: adamstark@88: //======================================================================= adamstark@91: double BTrack::getBeatTimeInSeconds (long frameNumber, int hopSize, int fs) adamstark@55: { adamstark@55: double hop = (double) hopSize; adamstark@55: double samplingFrequency = (double) fs; adamstark@55: double frameNum = (double) frameNumber; adamstark@55: adamstark@55: return ((hop / samplingFrequency) * frameNum); adamstark@55: } adamstark@55: adamstark@55: //======================================================================= adamstark@91: double BTrack::getBeatTimeInSeconds (int frameNumber, int hopSize, int fs) adamstark@55: { adamstark@55: long frameNum = (long) frameNumber; adamstark@55: adamstark@91: return getBeatTimeInSeconds (frameNum, hopSize, fs); adamstark@55: } adamstark@55: adamstark@55: adamstark@55: adamstark@55: //======================================================================= adamstark@91: void BTrack::initialise (int hopSize_, int frameSize_) adamstark@55: { adamstark@55: double rayparam = 43; adamstark@54: double pi = 3.14159265; adamstark@46: adamstark@46: adamstark@46: // initialise parameters adamstark@46: tightness = 5; adamstark@46: alpha = 0.9; adamstark@46: tempo = 120; adamstark@58: estimatedTempo = 120.0; adamstark@59: tempoToLagFactor = 60.*44100./512.; adamstark@46: adamstark@46: m0 = 10; adamstark@58: beatCounter = -1; adamstark@46: adamstark@57: beatDueInFrame = false; adamstark@46: adamstark@58: adamstark@46: // create rayleigh weighting vector adamstark@91: for (int n = 0; n < 128; n++) adamstark@46: { adamstark@58: weightingVector[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2))); adamstark@46: } adamstark@46: adamstark@46: // initialise prev_delta adamstark@91: for (int i = 0; i < 41; i++) adamstark@46: { adamstark@58: prevDelta[i] = 1; adamstark@46: } adamstark@46: adamstark@54: double t_mu = 41/2; adamstark@54: double m_sig; adamstark@54: double x; adamstark@46: // create tempo transition matrix adamstark@46: m_sig = 41/8; adamstark@46: for (int i = 0;i < 41;i++) adamstark@46: { adamstark@46: for (int j = 0;j < 41;j++) adamstark@46: { adamstark@46: x = j+1; adamstark@46: t_mu = i+1; adamstark@58: tempoTransitionMatrix[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) ); adamstark@46: } adamstark@55: } adamstark@46: adamstark@46: // tempo is not fixed adamstark@58: tempoFixed = false; adamstark@58: adamstark@58: // initialise latest cumulative score value adamstark@58: // in case it is requested before any processing takes place adamstark@58: latestCumulativeScoreValue = 0; adamstark@55: adamstark@55: // initialise algorithm given the hopsize adamstark@57: setHopSize(hopSize_); adamstark@88: adamstark@88: adamstark@88: // Set up FFT for calculating the auto-correlation function adamstark@88: FFTLengthForACFCalculation = 1024; adamstark@88: adamstark@91: complexIn = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data adamstark@91: complexOut = (fftw_complex*) fftw_malloc (sizeof(fftw_complex) * FFTLengthForACFCalculation); // complex array to hold fft data adamstark@88: adamstark@91: acfForwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexIn, complexOut, FFTW_FORWARD, FFTW_ESTIMATE); // FFT plan initialisation adamstark@91: acfBackwardFFT = fftw_plan_dft_1d (FFTLengthForACFCalculation, complexOut, complexIn, FFTW_BACKWARD, FFTW_ESTIMATE); // FFT plan initialisation adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: void BTrack::setHopSize (int hopSize_) adamstark@46: { adamstark@57: hopSize = hopSize_; adamstark@58: onsetDFBufferSize = (512*512)/hopSize; // calculate df buffer size adamstark@46: adamstark@57: beatPeriod = round(60/((((double) hopSize)/44100)*tempo)); adamstark@63: adamstark@63: // set size of onset detection function buffer adamstark@91: onsetDF.resize (onsetDFBufferSize); adamstark@63: adamstark@63: // set size of cumulative score buffer adamstark@91: cumulativeScore.resize (onsetDFBufferSize); adamstark@46: adamstark@46: // initialise df_buffer to zeros adamstark@91: for (int i = 0; i < onsetDFBufferSize; i++) adamstark@46: { adamstark@58: onsetDF[i] = 0; adamstark@58: cumulativeScore[i] = 0; adamstark@46: adamstark@57: if ((i % ((int) round(beatPeriod))) == 0) adamstark@46: { adamstark@58: onsetDF[i] = 1; adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: void BTrack::updateHopAndFrameSize (int hopSize_, int frameSize_) adamstark@65: { adamstark@65: // update the onset detection function object adamstark@91: odf.initialise (hopSize_, frameSize_); adamstark@65: adamstark@65: // update the hop size being used by the beat tracker adamstark@91: setHopSize (hopSize_); adamstark@65: } adamstark@65: adamstark@65: //======================================================================= adamstark@57: bool BTrack::beatDueInCurrentFrame() adamstark@57: { adamstark@57: return beatDueInFrame; adamstark@57: } adamstark@57: adamstark@57: //======================================================================= adamstark@78: double BTrack::getCurrentTempoEstimate() adamstark@78: { adamstark@78: return estimatedTempo; adamstark@78: } adamstark@78: adamstark@78: //======================================================================= adamstark@57: int BTrack::getHopSize() adamstark@57: { adamstark@57: return hopSize; adamstark@57: } adamstark@57: adamstark@57: //======================================================================= adamstark@58: double BTrack::getLatestCumulativeScoreValue() adamstark@58: { adamstark@58: return latestCumulativeScoreValue; adamstark@58: } adamstark@58: adamstark@58: //======================================================================= adamstark@91: void BTrack::processAudioFrame (double* frame) adamstark@55: { adamstark@55: // calculate the onset detection function sample for the frame adamstark@91: double sample = odf.calculateOnsetDetectionFunctionSample (frame); adamstark@55: adamstark@55: // process the new onset detection function sample in the beat tracking algorithm adamstark@91: processOnsetDetectionFunctionSample (sample); adamstark@55: } adamstark@55: adamstark@55: //======================================================================= adamstark@91: void BTrack::processOnsetDetectionFunctionSample (double newSample) adamstark@56: { adamstark@56: // we need to ensure that the onset adamstark@56: // detection function sample is positive adamstark@91: newSample = fabs (newSample); adamstark@56: adamstark@56: // add a tiny constant to the sample to stop it from ever going adamstark@56: // to zero. this is to avoid problems further down the line adamstark@56: newSample = newSample + 0.0001; adamstark@56: adamstark@46: m0--; adamstark@58: beatCounter--; adamstark@57: beatDueInFrame = false; adamstark@90: adamstark@46: // add new sample at the end adamstark@91: onsetDF.addSampleToEnd (newSample); adamstark@46: adamstark@46: // update cumulative score adamstark@91: updateCumulativeScore (newSample); adamstark@46: adamstark@46: // if we are halfway between beats adamstark@46: if (m0 == 0) adamstark@46: { adamstark@57: predictBeat(); adamstark@46: } adamstark@46: adamstark@46: // if we are at a beat adamstark@58: if (beatCounter == 0) adamstark@46: { adamstark@57: beatDueInFrame = true; // indicate a beat should be output adamstark@46: adamstark@46: // recalculate the tempo adamstark@57: resampleOnsetDetectionFunction(); adamstark@57: calculateTempo(); adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: void BTrack::setTempo (double tempo) adamstark@46: { adamstark@46: adamstark@46: /////////// TEMPO INDICATION RESET ////////////////// adamstark@46: adamstark@46: // firstly make sure tempo is between 80 and 160 bpm.. adamstark@46: while (tempo > 160) adamstark@46: { adamstark@46: tempo = tempo/2; adamstark@46: } adamstark@46: adamstark@46: while (tempo < 80) adamstark@46: { adamstark@46: tempo = tempo * 2; adamstark@46: } adamstark@46: adamstark@46: // convert tempo from bpm value to integer index of tempo probability adamstark@46: int tempo_index = (int) round((tempo - 80)/2); adamstark@46: adamstark@46: // now set previous tempo observations to zero adamstark@46: for (int i=0;i < 41;i++) adamstark@46: { adamstark@58: prevDelta[i] = 0; adamstark@46: } adamstark@46: adamstark@46: // set desired tempo index to 1 adamstark@58: prevDelta[tempo_index] = 1; adamstark@46: adamstark@46: adamstark@46: /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE ////////////////// adamstark@46: adamstark@46: // calculate new beat period adamstark@57: int new_bperiod = (int) round(60/((((double) hopSize)/44100)*tempo)); adamstark@46: adamstark@46: int bcounter = 1; adamstark@46: // initialise df_buffer to zeros adamstark@58: for (int i = (onsetDFBufferSize-1);i >= 0;i--) adamstark@46: { adamstark@46: if (bcounter == 1) adamstark@46: { adamstark@58: cumulativeScore[i] = 150; adamstark@58: onsetDF[i] = 150; adamstark@46: } adamstark@46: else adamstark@46: { adamstark@58: cumulativeScore[i] = 10; adamstark@58: onsetDF[i] = 10; adamstark@46: } adamstark@46: adamstark@46: bcounter++; adamstark@46: adamstark@46: if (bcounter > new_bperiod) adamstark@46: { adamstark@46: bcounter = 1; adamstark@46: } adamstark@46: } adamstark@46: adamstark@46: /////////// INDICATE THAT THIS IS A BEAT ////////////////// adamstark@46: adamstark@46: // beat is now adamstark@58: beatCounter = 0; adamstark@46: adamstark@46: // offbeat is half of new beat period away adamstark@54: m0 = (int) round(((double) new_bperiod)/2); adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: void BTrack::fixTempo (double tempo) adamstark@46: { adamstark@46: // firstly make sure tempo is between 80 and 160 bpm.. adamstark@46: while (tempo > 160) adamstark@46: { adamstark@46: tempo = tempo/2; adamstark@46: } adamstark@46: adamstark@46: while (tempo < 80) adamstark@46: { adamstark@46: tempo = tempo * 2; adamstark@46: } adamstark@46: adamstark@46: // convert tempo from bpm value to integer index of tempo probability adamstark@46: int tempo_index = (int) round((tempo - 80)/2); adamstark@46: adamstark@46: // now set previous fixed previous tempo observation values to zero adamstark@46: for (int i=0;i < 41;i++) adamstark@46: { adamstark@58: prevDeltaFixed[i] = 0; adamstark@46: } adamstark@46: adamstark@46: // set desired tempo index to 1 adamstark@58: prevDeltaFixed[tempo_index] = 1; adamstark@46: adamstark@46: // set the tempo fix flag adamstark@58: tempoFixed = true; adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::doNotFixTempo() adamstark@46: { adamstark@46: // set the tempo fix flag adamstark@58: tempoFixed = false; adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::resampleOnsetDetectionFunction() adamstark@46: { adamstark@46: float output[512]; adamstark@89: adamstark@58: float input[onsetDFBufferSize]; adamstark@54: adamstark@58: for (int i = 0;i < onsetDFBufferSize;i++) adamstark@54: { adamstark@58: input[i] = (float) onsetDF[i]; adamstark@54: } adamstark@89: adamstark@89: double src_ratio = 512.0/((double) onsetDFBufferSize); adamstark@89: int BUFFER_LEN = onsetDFBufferSize; adamstark@89: int output_len; adamstark@89: SRC_DATA src_data ; adamstark@89: adamstark@89: //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ; adamstark@89: output_len = 512; adamstark@89: adamstark@89: src_data.data_in = input; adamstark@89: src_data.input_frames = BUFFER_LEN; adamstark@89: adamstark@89: src_data.src_ratio = src_ratio; adamstark@89: adamstark@89: src_data.data_out = output; adamstark@89: src_data.output_frames = output_len; adamstark@89: adamstark@89: src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1); adamstark@89: adamstark@89: for (int i = 0;i < output_len;i++) adamstark@89: { adamstark@89: resampledOnsetDF[i] = (double) src_data.data_out[i]; adamstark@89: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::calculateTempo() adamstark@46: { adamstark@46: // adaptive threshold on input adamstark@91: adaptiveThreshold (resampledOnsetDF,512); adamstark@46: adamstark@46: // calculate auto-correlation function of detection function adamstark@91: calculateBalancedACF (resampledOnsetDF); adamstark@46: adamstark@46: // calculate output of comb filterbank adamstark@57: calculateOutputOfCombFilterBank(); adamstark@46: adamstark@46: // adaptive threshold on rcf adamstark@91: adaptiveThreshold (combFilterBankOutput,128); adamstark@46: adamstark@46: adamstark@46: int t_index; adamstark@46: int t_index2; adamstark@59: // calculate tempo observation vector from beat period observation vector adamstark@46: for (int i = 0;i < 41;i++) adamstark@46: { adamstark@91: t_index = (int) round (tempoToLagFactor / ((double) ((2*i)+80))); adamstark@91: t_index2 = (int) round (tempoToLagFactor / ((double) ((4*i)+160))); adamstark@46: adamstark@46: adamstark@58: tempoObservationVector[i] = combFilterBankOutput[t_index-1] + combFilterBankOutput[t_index2-1]; adamstark@46: } adamstark@46: adamstark@46: adamstark@54: double maxval; adamstark@54: double maxind; adamstark@54: double curval; adamstark@46: adamstark@46: // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function adamstark@58: if (tempoFixed) adamstark@46: { adamstark@46: for (int k = 0;k < 41;k++) adamstark@46: { adamstark@58: prevDelta[k] = prevDeltaFixed[k]; adamstark@46: } adamstark@46: } adamstark@46: adamstark@46: for (int j=0;j < 41;j++) adamstark@46: { adamstark@46: maxval = -1; adamstark@46: for (int i = 0;i < 41;i++) adamstark@46: { adamstark@91: curval = prevDelta[i] * tempoTransitionMatrix[i][j]; adamstark@46: adamstark@46: if (curval > maxval) adamstark@46: { adamstark@46: maxval = curval; adamstark@46: } adamstark@46: } adamstark@46: adamstark@91: delta[j] = maxval * tempoObservationVector[j]; adamstark@46: } adamstark@46: adamstark@46: adamstark@57: normaliseArray(delta,41); adamstark@46: adamstark@46: maxind = -1; adamstark@46: maxval = -1; adamstark@46: adamstark@46: for (int j=0;j < 41;j++) adamstark@46: { adamstark@46: if (delta[j] > maxval) adamstark@46: { adamstark@46: maxval = delta[j]; adamstark@46: maxind = j; adamstark@46: } adamstark@46: adamstark@58: prevDelta[j] = delta[j]; adamstark@46: } adamstark@46: adamstark@91: beatPeriod = round ((60.0*44100.0)/(((2*maxind)+80)*((double) hopSize))); adamstark@46: adamstark@57: if (beatPeriod > 0) adamstark@46: { adamstark@91: estimatedTempo = 60.0/((((double) hopSize) / 44100.0) * beatPeriod); adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: void BTrack::adaptiveThreshold (double*x, int N) adamstark@46: { adamstark@46: int i = 0; adamstark@46: int k,t = 0; adamstark@54: double x_thresh[N]; adamstark@46: adamstark@46: int p_post = 7; adamstark@46: int p_pre = 8; adamstark@46: adamstark@52: t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays adamstark@46: adamstark@46: // find threshold for first 't' samples, where a full average cannot be computed yet adamstark@46: for (i = 0;i <= t;i++) adamstark@46: { adamstark@91: k = std::min ((i+p_pre),N); adamstark@91: x_thresh[i] = calculateMeanOfArray (x,1,k); adamstark@46: } adamstark@46: // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post] adamstark@46: for (i = t+1;i < N-p_post;i++) adamstark@46: { adamstark@91: x_thresh[i] = calculateMeanOfArray (x,i-p_pre,i+p_post); adamstark@46: } adamstark@46: // for last few samples calculate threshold, again, not enough samples to do as above adamstark@46: for (i = N-p_post;i < N;i++) adamstark@46: { adamstark@91: k = std::max ((i-p_post),1); adamstark@91: x_thresh[i] = calculateMeanOfArray (x,k,N); adamstark@46: } adamstark@46: adamstark@46: // subtract the threshold from the detection function and check that it is not less than 0 adamstark@91: for (i = 0; i < N; i++) adamstark@46: { adamstark@46: x[i] = x[i] - x_thresh[i]; adamstark@46: if (x[i] < 0) adamstark@46: { adamstark@46: x[i] = 0; adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::calculateOutputOfCombFilterBank() adamstark@46: { adamstark@46: int numelem; adamstark@46: adamstark@46: for (int i = 0;i < 128;i++) adamstark@46: { adamstark@58: combFilterBankOutput[i] = 0; adamstark@46: } adamstark@46: adamstark@46: numelem = 4; adamstark@46: adamstark@91: for (int i = 2; i <= 127; i++) // max beat period adamstark@46: { adamstark@91: for (int a = 1; a <= numelem; a++) // number of comb elements adamstark@46: { adamstark@91: for (int b = 1-a; b <= a-1; b++) // general state using normalisation of comb elements adamstark@46: { adamstark@58: combFilterBankOutput[i-1] = combFilterBankOutput[i-1] + (acf[(a*i+b)-1]*weightingVector[i-1])/(2*a-1); // calculate value for comb filter row adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: void BTrack::calculateBalancedACF (double* onsetDetectionFunction) adamstark@46: { adamstark@88: int onsetDetectionFunctionLength = 512; adamstark@88: adamstark@88: // copy into complex array and zero pad adamstark@88: for (int i = 0;i < FFTLengthForACFCalculation;i++) adamstark@88: { adamstark@88: if (i < onsetDetectionFunctionLength) adamstark@88: { adamstark@88: complexIn[i][0] = onsetDetectionFunction[i]; adamstark@88: complexIn[i][1] = 0.0; adamstark@88: } adamstark@88: else adamstark@88: { adamstark@88: complexIn[i][0] = 0.0; adamstark@88: complexIn[i][1] = 0.0; adamstark@88: } adamstark@88: } adamstark@88: adamstark@88: // perform the fft adamstark@91: fftw_execute (acfForwardFFT); adamstark@88: adamstark@88: // multiply by complex conjugate adamstark@88: for (int i = 0;i < FFTLengthForACFCalculation;i++) adamstark@88: { adamstark@88: complexOut[i][0] = complexOut[i][0]*complexOut[i][0] + complexOut[i][1]*complexOut[i][1]; adamstark@88: complexOut[i][1] = 0.0; adamstark@88: } adamstark@88: adamstark@88: // perform the ifft adamstark@91: fftw_execute (acfBackwardFFT); adamstark@88: adamstark@88: adamstark@88: double lag = 512; adamstark@88: adamstark@91: for (int i = 0; i < 512; i++) adamstark@88: { adamstark@88: // calculate absolute value of result adamstark@91: double absValue = sqrt (complexIn[i][0]*complexIn[i][0] + complexIn[i][1]*complexIn[i][1]); adamstark@88: adamstark@88: // divide by inverse lad to deal with scale bias towards small lags adamstark@88: acf[i] = absValue / lag; adamstark@88: adamstark@88: // this division by 1024 is technically unnecessary but it ensures the algorithm produces adamstark@88: // exactly the same ACF output as the old time domain implementation. The time difference is adamstark@88: // minimal so I decided to keep it adamstark@88: acf[i] = acf[i] / 1024.; adamstark@88: adamstark@88: lag = lag - 1.; adamstark@88: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: double BTrack::calculateMeanOfArray (double* array, int startIndex, int endIndex) adamstark@46: { adamstark@46: int i; adamstark@47: double sum = 0; adamstark@47: adamstark@59: int length = endIndex - startIndex; adamstark@46: adamstark@46: // find sum adamstark@91: for (i = startIndex; i < endIndex; i++) adamstark@46: { adamstark@46: sum = sum + array[i]; adamstark@46: } adamstark@46: adamstark@47: if (length > 0) adamstark@47: { adamstark@47: return sum / length; // average and return adamstark@47: } adamstark@47: else adamstark@47: { adamstark@47: return 0; adamstark@47: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: void BTrack::normaliseArray(double* array, int N) adamstark@46: { adamstark@46: double sum = 0; adamstark@46: adamstark@91: for (int i = 0; i < N; i++) adamstark@46: { adamstark@46: if (array[i] > 0) adamstark@46: { adamstark@46: sum = sum + array[i]; adamstark@46: } adamstark@46: } adamstark@46: adamstark@46: if (sum > 0) adamstark@46: { adamstark@91: for (int i = 0; i < N; i++) adamstark@46: { adamstark@46: array[i] = array[i] / sum; adamstark@46: } adamstark@46: } adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@91: void BTrack::updateCumulativeScore (double odfSample) adamstark@46: { adamstark@46: int start, end, winsize; adamstark@54: double max; adamstark@46: adamstark@91: start = onsetDFBufferSize - round (2 * beatPeriod); adamstark@91: end = onsetDFBufferSize - round (beatPeriod / 2); adamstark@46: winsize = end-start+1; adamstark@46: adamstark@54: double w1[winsize]; adamstark@57: double v = -2*beatPeriod; adamstark@54: double wcumscore; adamstark@46: adamstark@46: adamstark@46: // create window adamstark@91: for (int i = 0; i < winsize; i++) adamstark@46: { adamstark@91: w1[i] = exp((-1*pow (tightness * log (-v / beatPeriod), 2)) / 2); adamstark@46: v = v+1; adamstark@46: } adamstark@46: adamstark@46: // calculate new cumulative score value adamstark@46: max = 0; adamstark@46: int n = 0; adamstark@91: for (int i=start; i <= end; i++) adamstark@46: { adamstark@58: wcumscore = cumulativeScore[i]*w1[n]; adamstark@46: adamstark@46: if (wcumscore > max) adamstark@46: { adamstark@46: max = wcumscore; adamstark@46: } adamstark@46: n++; adamstark@46: } adamstark@46: adamstark@90: adamstark@89: latestCumulativeScoreValue = ((1-alpha)*odfSample) + (alpha*max); adamstark@89: adamstark@91: cumulativeScore.addSampleToEnd (latestCumulativeScoreValue); adamstark@46: } adamstark@46: adamstark@51: //======================================================================= adamstark@57: void BTrack::predictBeat() adamstark@46: { adamstark@58: int windowSize = (int) beatPeriod; adamstark@58: double futureCumulativeScore[onsetDFBufferSize + windowSize]; adamstark@58: double w2[windowSize]; adamstark@46: // copy cumscore to first part of fcumscore adamstark@58: for (int i = 0;i < onsetDFBufferSize;i++) adamstark@46: { adamstark@58: futureCumulativeScore[i] = cumulativeScore[i]; adamstark@46: } adamstark@46: adamstark@46: // create future window adamstark@54: double v = 1; adamstark@91: for (int i = 0; i < windowSize; i++) adamstark@46: { adamstark@57: w2[i] = exp((-1*pow((v - (beatPeriod/2)),2)) / (2*pow((beatPeriod/2) ,2))); adamstark@46: v++; adamstark@46: } adamstark@46: adamstark@46: // create past window adamstark@57: v = -2*beatPeriod; adamstark@58: int start = onsetDFBufferSize - round(2*beatPeriod); adamstark@58: int end = onsetDFBufferSize - round(beatPeriod/2); adamstark@46: int pastwinsize = end-start+1; adamstark@54: double w1[pastwinsize]; adamstark@46: adamstark@46: for (int i = 0;i < pastwinsize;i++) adamstark@46: { adamstark@57: w1[i] = exp((-1*pow(tightness*log(-v/beatPeriod),2))/2); adamstark@46: v = v+1; adamstark@46: } adamstark@46: adamstark@46: adamstark@46: adamstark@46: // calculate future cumulative score adamstark@54: double max; adamstark@46: int n; adamstark@54: double wcumscore; adamstark@91: for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++) adamstark@46: { adamstark@91: start = i - round (2*beatPeriod); adamstark@91: end = i - round (beatPeriod/2); adamstark@46: adamstark@46: max = 0; adamstark@46: n = 0; adamstark@46: for (int k=start;k <= end;k++) adamstark@46: { adamstark@58: wcumscore = futureCumulativeScore[k]*w1[n]; adamstark@46: adamstark@46: if (wcumscore > max) adamstark@46: { adamstark@46: max = wcumscore; adamstark@46: } adamstark@46: n++; adamstark@46: } adamstark@46: adamstark@58: futureCumulativeScore[i] = max; adamstark@46: } adamstark@46: adamstark@46: adamstark@46: // predict beat adamstark@46: max = 0; adamstark@46: n = 0; adamstark@46: adamstark@91: for (int i = onsetDFBufferSize; i < (onsetDFBufferSize + windowSize); i++) adamstark@46: { adamstark@58: wcumscore = futureCumulativeScore[i]*w2[n]; adamstark@46: adamstark@46: if (wcumscore > max) adamstark@46: { adamstark@46: max = wcumscore; adamstark@58: beatCounter = n; adamstark@46: } adamstark@46: adamstark@46: n++; adamstark@46: } adamstark@46: adamstark@46: // set next prediction time adamstark@91: m0 = beatCounter + round (beatPeriod / 2); adamstark@46: }