wolffd@0: 
wolffd@0: 
wolffd@0: 
wolffd@0: NETLAB Reference Documentation 
wolffd@0: 
wolffd@0: 
wolffd@0: 
wolffd@0:  NETLAB Online Reference Documentation 
wolffd@0: Welcome to the NETLAB online reference documentation.
wolffd@0: The NETLAB simulation software is designed to provide all the tools necessary
wolffd@0: for principled and theoretically well founded application development. The
wolffd@0: NETLAB library is based on the approach and techniques described in Neural
wolffd@0: Networks for Pattern Recognition (Bishop, 1995). The library includes software
wolffd@0: implementations of a wide range of data analysis techniques, many of which are
wolffd@0: not widely available, and are rarely, if ever, included in standard neural
wolffd@0: network simulation packages.
wolffd@0: The online reference documentation provides direct hypertext links to specific Netlab function descriptions.
wolffd@0: 
If you have any comments or problems to report, please contact Ian Nabney (i.t.nabney@aston.ac.uk) or Christopher Bishop (c.m.bishop@aston.ac.uk).
 Index
wolffd@0: 
wolffd@0: An alphabetic list of functions in Netlab.
wolffd@0: 
wolffd@0: - 
wolffd@0: conffig
- 
wolffd@0:  Display a confusion matrix. 
wolffd@0: 
- 
wolffd@0: confmat
- 
wolffd@0:  Compute a confusion matrix. 
wolffd@0: 
- 
wolffd@0: conjgrad
- 
wolffd@0:  Conjugate gradients optimization. 
wolffd@0: 
- 
wolffd@0: consist
- 
wolffd@0:  Check that arguments are consistent. 
wolffd@0: 
- 
wolffd@0: convertoldnet
- 
wolffd@0:  Convert pre-2.3 release MLP and MDN nets to new format 
wolffd@0: 
- 
wolffd@0: datread
- 
wolffd@0:  Read data from an ascii file. 
wolffd@0: 
- 
wolffd@0: datwrite
- 
wolffd@0:  Write data to ascii file. 
wolffd@0: 
- 
wolffd@0: dem2ddat
- 
wolffd@0:  Generates two dimensional data for demos. 
wolffd@0: 
- 
wolffd@0: demard
- 
wolffd@0:  Automatic relevance determination using the MLP. 
wolffd@0: 
- 
wolffd@0: demev1
- 
wolffd@0:  Demonstrate Bayesian regression for the MLP. 
wolffd@0: 
- 
wolffd@0: demev2
- 
wolffd@0:  Demonstrate Bayesian classification for the MLP. 
wolffd@0: 
- 
wolffd@0: demev3
- 
wolffd@0:  Demonstrate Bayesian regression for the RBF. 
wolffd@0: 
- 
wolffd@0: demgauss
- 
wolffd@0:  Demonstrate sampling from Gaussian distributions. 
wolffd@0: 
- 
wolffd@0: demglm1
- 
wolffd@0:  Demonstrate simple classification using a generalized linear model. 
wolffd@0: 
- 
wolffd@0: demglm2
- 
wolffd@0:  Demonstrate simple classification using a generalized linear model. 
wolffd@0: 
- 
wolffd@0: demgmm1
- 
wolffd@0:  Demonstrate density modelling with a Gaussian mixture model. 
wolffd@0: 
- 
wolffd@0: demgmm3
- 
wolffd@0:  Demonstrate density modelling with a Gaussian mixture model. 
wolffd@0: 
- 
wolffd@0: demgmm4
- 
wolffd@0:  Demonstrate density modelling with a Gaussian mixture model. 
wolffd@0: 
- 
wolffd@0: demgmm5
- 
wolffd@0:  Demonstrate density modelling with a PPCA mixture model. 
wolffd@0: 
- 
wolffd@0: demgp
- 
wolffd@0:  Demonstrate simple regression using a Gaussian Process. 
wolffd@0: 
- 
wolffd@0: demgpard
- 
wolffd@0:  Demonstrate ARD using a Gaussian Process. 
wolffd@0: 
- 
wolffd@0: demgpot
- 
wolffd@0:  Computes the gradient of the negative log likelihood for a mixture model. 
wolffd@0: 
- 
wolffd@0: demgtm1
- 
wolffd@0:  Demonstrate EM for GTM. 
wolffd@0: 
- 
wolffd@0: demgtm2
- 
wolffd@0:  Demonstrate GTM for visualisation. 
wolffd@0: 
- 
wolffd@0: demhint
- 
wolffd@0:  Demonstration of Hinton diagram for 2-layer feed-forward network. 
wolffd@0: 
- 
wolffd@0: demhmc1
- 
wolffd@0:  Demonstrate Hybrid Monte Carlo sampling on mixture of two Gaussians. 
wolffd@0: 
- 
wolffd@0: demhmc2
- 
wolffd@0:  Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. 
wolffd@0: 
- 
wolffd@0: demhmc3
- 
wolffd@0:  Demonstrate Bayesian regression with Hybrid Monte Carlo sampling. 
wolffd@0: 
- 
wolffd@0: demkmean
- 
wolffd@0:  Demonstrate simple clustering model trained with K-means. 
wolffd@0: 
- 
wolffd@0: demknn1
- 
wolffd@0:  Demonstrate nearest neighbour classifier. 
wolffd@0: 
- 
wolffd@0: demmdn1
- 
wolffd@0:  Demonstrate fitting a multi-valued function using a Mixture Density Network. 
wolffd@0: 
- 
wolffd@0: demmet1
- 
wolffd@0:  Demonstrate Markov Chain Monte Carlo sampling on a Gaussian. 
wolffd@0: 
- 
wolffd@0: demmlp1
- 
wolffd@0:  Demonstrate simple regression using a multi-layer perceptron 
wolffd@0: 
- 
wolffd@0: demmlp2
- 
wolffd@0:  Demonstrate simple classification using a multi-layer perceptron 
wolffd@0: 
- 
wolffd@0: demnlab
- 
wolffd@0:  A front-end Graphical User Interface to the demos 
wolffd@0: 
- 
wolffd@0: demns1
- 
wolffd@0:  Demonstrate Neuroscale for visualisation. 
wolffd@0: 
- 
wolffd@0: demolgd1
- 
wolffd@0:  Demonstrate simple MLP optimisation with on-line gradient descent 
wolffd@0: 
- 
wolffd@0: demopt1
- 
wolffd@0:  Demonstrate different optimisers on Rosenbrock's function. 
wolffd@0: 
- 
wolffd@0: dempot
- 
wolffd@0:  Computes the negative log likelihood for a mixture model. 
wolffd@0: 
- 
wolffd@0: demprgp
- 
wolffd@0:  Demonstrate sampling from a Gaussian Process prior. 
wolffd@0: 
- 
wolffd@0: demprior
- 
wolffd@0:  Demonstrate sampling from a multi-parameter Gaussian prior. 
wolffd@0: 
- 
wolffd@0: demrbf1
- 
wolffd@0:  Demonstrate simple regression using a radial basis function network. 
wolffd@0: 
- 
wolffd@0: demsom1
- 
wolffd@0:  Demonstrate SOM for visualisation. 
wolffd@0: 
- 
wolffd@0: demtrain
- 
wolffd@0:  Demonstrate training of MLP network. 
wolffd@0: 
- 
wolffd@0: dist2
- 
wolffd@0:  Calculates squared distance between two sets of points. 
wolffd@0: 
- 
wolffd@0: eigdec
- 
wolffd@0:  Sorted eigendecomposition 
wolffd@0: 
- 
wolffd@0: errbayes
- 
wolffd@0:  Evaluate Bayesian error function for network. 
wolffd@0: 
- 
wolffd@0: evidence
- 
wolffd@0:  Re-estimate hyperparameters using evidence approximation. 
wolffd@0: 
- 
wolffd@0: fevbayes
- 
wolffd@0:  Evaluate Bayesian regularisation for network forward propagation. 
wolffd@0: 
- 
wolffd@0: gauss
- 
wolffd@0:  Evaluate a Gaussian distribution. 
wolffd@0: 
- 
wolffd@0: gbayes
- 
wolffd@0:  Evaluate gradient of Bayesian error function for network. 
wolffd@0: 
- 
wolffd@0: glm
- 
wolffd@0:  Create a generalized linear model. 
wolffd@0: 
- 
wolffd@0: glmderiv
- 
wolffd@0:  Evaluate derivatives of GLM outputs with respect to weights. 
wolffd@0: 
- 
wolffd@0: glmerr
- 
wolffd@0:  Evaluate error function for generalized linear model. 
wolffd@0: 
- 
wolffd@0: glmevfwd
- 
wolffd@0:  Forward propagation with evidence for GLM 
wolffd@0: 
- 
wolffd@0: glmfwd
- 
wolffd@0:  Forward propagation through generalized linear model. 
wolffd@0: 
- 
wolffd@0: glmgrad
- 
wolffd@0:  Evaluate gradient of error function for generalized linear model. 
wolffd@0: 
- 
wolffd@0: glmhess
- 
wolffd@0:  Evaluate the Hessian matrix for a generalised linear model. 
wolffd@0: 
- 
wolffd@0: glminit
- 
wolffd@0:  Initialise the weights in a generalized linear model. 
wolffd@0: 
- 
wolffd@0: glmpak
- 
wolffd@0:  Combines weights and biases into one weights vector. 
wolffd@0: 
- 
wolffd@0: glmtrain
- 
wolffd@0:  Specialised training of generalized linear model 
wolffd@0: 
- 
wolffd@0: glmunpak
- 
wolffd@0:  Separates weights vector into weight and bias matrices. 
wolffd@0: 
- 
wolffd@0: gmm
- 
wolffd@0:  Creates a Gaussian mixture model with specified architecture. 
wolffd@0: 
- 
wolffd@0: gmmactiv
- 
wolffd@0:  Computes the activations of a Gaussian mixture model. 
wolffd@0: 
- 
wolffd@0: gmmem
- 
wolffd@0:  EM algorithm for Gaussian mixture model. 
wolffd@0: 
- 
wolffd@0: gmminit
- 
wolffd@0:  Initialises Gaussian mixture model from data 
wolffd@0: 
- 
wolffd@0: gmmpak
- 
wolffd@0:  Combines all the parameters in a Gaussian mixture model into one vector. 
wolffd@0: 
- 
wolffd@0: gmmpost
- 
wolffd@0:  Computes the class posterior probabilities of a Gaussian mixture model. 
wolffd@0: 
- 
wolffd@0: gmmprob
- 
wolffd@0:  Computes the data probability for a Gaussian mixture model. 
wolffd@0: 
- 
wolffd@0: gmmsamp
- 
wolffd@0:  Sample from a Gaussian mixture distribution. 
wolffd@0: 
- 
wolffd@0: gmmunpak
- 
wolffd@0:  Separates a vector of Gaussian mixture model parameters into its components. 
wolffd@0: 
- 
wolffd@0: gp
- 
wolffd@0:  Create a Gaussian Process. 
wolffd@0: 
- 
wolffd@0: gpcovar
- 
wolffd@0:  Calculate the covariance for a Gaussian Process. 
wolffd@0: 
- 
wolffd@0: gpcovarf
- 
wolffd@0:  Calculate the covariance function for a Gaussian Process. 
wolffd@0: 
- 
wolffd@0: gpcovarp
- 
wolffd@0:  Calculate the prior covariance for a Gaussian Process. 
wolffd@0: 
- 
wolffd@0: gperr
- 
wolffd@0:  Evaluate error function for Gaussian Process. 
wolffd@0: 
- 
wolffd@0: gpfwd
- 
wolffd@0:  Forward propagation through Gaussian Process. 
wolffd@0: 
- 
wolffd@0: gpgrad
- 
wolffd@0:  Evaluate error gradient for Gaussian Process. 
wolffd@0: 
- 
wolffd@0: gpinit
- 
wolffd@0:  Initialise Gaussian Process model. 
wolffd@0: 
- 
wolffd@0: gppak
- 
wolffd@0:  Combines GP hyperparameters into one vector. 
wolffd@0: 
- 
wolffd@0: gpunpak
- 
wolffd@0:  Separates hyperparameter vector into components. 
wolffd@0: 
- 
wolffd@0: gradchek
- 
wolffd@0:  Checks a user-defined gradient function using finite differences. 
wolffd@0: 
- 
wolffd@0: graddesc
- 
wolffd@0:  Gradient descent optimization. 
wolffd@0: 
- 
wolffd@0: gsamp
- 
wolffd@0:  Sample from a Gaussian distribution. 
wolffd@0: 
- 
wolffd@0: gtm
- 
wolffd@0:  Create a Generative Topographic Map. 
wolffd@0: 
- 
wolffd@0: gtmem
- 
wolffd@0:  EM algorithm for Generative Topographic Mapping. 
wolffd@0: 
- 
wolffd@0: gtmfwd
- 
wolffd@0:  Forward propagation through GTM. 
wolffd@0: 
- 
wolffd@0: gtminit
- 
wolffd@0:  Initialise the weights and latent sample in a GTM. 
wolffd@0: 
- 
wolffd@0: gtmlmean
- 
wolffd@0:  Mean responsibility for data in a GTM. 
wolffd@0: 
- 
wolffd@0: gtmlmode
- 
wolffd@0:  Mode responsibility for data in a GTM. 
wolffd@0: 
- 
wolffd@0: gtmmag
- 
wolffd@0:  Magnification factors for a GTM 
wolffd@0: 
- 
wolffd@0: gtmpost
- 
wolffd@0:  Latent space responsibility for data in a GTM. 
wolffd@0: 
- 
wolffd@0: gtmprob
- 
wolffd@0:  Probability for data under a GTM. 
wolffd@0: 
- 
wolffd@0: hbayes
- 
wolffd@0:  Evaluate Hessian of Bayesian error function for network. 
wolffd@0: 
- 
wolffd@0: hesschek
- 
wolffd@0:  Use central differences to confirm correct evaluation of Hessian matrix. 
wolffd@0: 
- 
wolffd@0: hintmat
- 
wolffd@0:  Evaluates the coordinates of the patches for a Hinton diagram. 
wolffd@0: 
- 
wolffd@0: hinton
- 
wolffd@0:  Plot Hinton diagram for a weight matrix. 
wolffd@0: 
- 
wolffd@0: histp
- 
wolffd@0:  Histogram estimate of 1-dimensional probability distribution. 
wolffd@0: 
- 
wolffd@0: hmc
- 
wolffd@0:  Hybrid Monte Carlo sampling. 
wolffd@0: 
- 
wolffd@0: kmeans
- 
wolffd@0:  Trains a k means cluster model. 
wolffd@0: 
- 
wolffd@0: knn
- 
wolffd@0:  Creates a K-nearest-neighbour classifier. 
wolffd@0: 
- 
wolffd@0: knnfwd
- 
wolffd@0:  Forward propagation through a K-nearest-neighbour classifier. 
wolffd@0: 
- 
wolffd@0: linef
- 
wolffd@0:  Calculate function value along a line. 
wolffd@0: 
- 
wolffd@0: linemin
- 
wolffd@0:  One dimensional minimization. 
wolffd@0: 
- 
wolffd@0: maxitmess
- 
wolffd@0:  Create a standard error message when training reaches max. iterations. 
wolffd@0: 
- 
wolffd@0: mdn
- 
wolffd@0:  Creates a Mixture Density Network with specified architecture. 
wolffd@0: 
- 
wolffd@0: mdn2gmm
- 
wolffd@0:  Converts an MDN mixture data structure to array of GMMs. 
wolffd@0: 
- 
wolffd@0: mdndist2
- 
wolffd@0:  Calculates squared distance between centres of Gaussian kernels and data 
wolffd@0: 
- 
wolffd@0: mdnerr
- 
wolffd@0:  Evaluate error function for Mixture Density Network. 
wolffd@0: 
- 
wolffd@0: mdnfwd
- 
wolffd@0:  Forward propagation through Mixture Density Network. 
wolffd@0: 
- 
wolffd@0: mdngrad
- 
wolffd@0:  Evaluate gradient of error function for Mixture Density Network. 
wolffd@0: 
- 
wolffd@0: mdninit
- 
wolffd@0:  Initialise the weights in a Mixture Density Network. 
wolffd@0: 
- 
wolffd@0: mdnpak
- 
wolffd@0:  Combines weights and biases into one weights vector. 
wolffd@0: 
- 
wolffd@0: mdnpost
- 
wolffd@0:  Computes the posterior probability for each MDN mixture component. 
wolffd@0: 
- 
wolffd@0: mdnprob
- 
wolffd@0:  Computes the data probability likelihood for an MDN mixture structure. 
wolffd@0: 
- 
wolffd@0: mdnunpak
- 
wolffd@0:  Separates weights vector into weight and bias matrices. 
wolffd@0: 
- 
wolffd@0: metrop
- 
wolffd@0:  Markov Chain Monte Carlo sampling with Metropolis algorithm. 
wolffd@0: 
- 
wolffd@0: minbrack
- 
wolffd@0:  Bracket a minimum of a function of one variable. 
wolffd@0: 
- 
wolffd@0: mlp
- 
wolffd@0:  Create a 2-layer feedforward network. 
wolffd@0: 
- 
wolffd@0: mlpbkp
- 
wolffd@0:  Backpropagate gradient of error function for 2-layer network. 
wolffd@0: 
- 
wolffd@0: mlpderiv
- 
wolffd@0:  Evaluate derivatives of network outputs with respect to weights. 
wolffd@0: 
- 
wolffd@0: mlperr
- 
wolffd@0:  Evaluate error function for 2-layer network. 
wolffd@0: 
- 
wolffd@0: mlpevfwd
- 
wolffd@0:  Forward propagation with evidence for MLP 
wolffd@0: 
- 
wolffd@0: mlpfwd
- 
wolffd@0:  Forward propagation through 2-layer network. 
wolffd@0: 
- 
wolffd@0: mlpgrad
- 
wolffd@0:  Evaluate gradient of error function for 2-layer network. 
wolffd@0: 
- 
wolffd@0: mlphdotv
- 
wolffd@0:  Evaluate the product of the data Hessian with a vector. 
wolffd@0: 
- 
wolffd@0: mlphess
- 
wolffd@0:  Evaluate the Hessian matrix for a multi-layer perceptron network. 
wolffd@0: 
- 
wolffd@0: mlphint
- 
wolffd@0:  Plot Hinton diagram for 2-layer feed-forward network. 
wolffd@0: 
- 
wolffd@0: mlpinit
- 
wolffd@0:  Initialise the weights in a 2-layer feedforward network. 
wolffd@0: 
- 
wolffd@0: mlppak
- 
wolffd@0:  Combines weights and biases into one weights vector. 
wolffd@0: 
- 
wolffd@0: mlpprior
- 
wolffd@0:  Create Gaussian prior for mlp. 
wolffd@0: 
- 
wolffd@0: mlptrain
- 
wolffd@0:  Utility to train an MLP network for demtrain 
wolffd@0: 
- 
wolffd@0: mlpunpak
- 
wolffd@0:  Separates weights vector into weight and bias matrices. 
wolffd@0: 
- 
wolffd@0: netderiv
- 
wolffd@0:  Evaluate derivatives of network outputs by weights generically. 
wolffd@0: 
- 
wolffd@0: neterr
- 
wolffd@0:  Evaluate network error function for generic optimizers 
wolffd@0: 
- 
wolffd@0: netevfwd
- 
wolffd@0:  Generic forward propagation with evidence for network 
wolffd@0: 
- 
wolffd@0: netgrad
- 
wolffd@0:  Evaluate network error gradient for generic optimizers 
wolffd@0: 
- 
wolffd@0: nethess
- 
wolffd@0:  Evaluate network Hessian 
wolffd@0: 
- 
wolffd@0: netinit
- 
wolffd@0:  Initialise the weights in a network. 
wolffd@0: 
- 
wolffd@0: netopt
- 
wolffd@0:  Optimize the weights in a network model. 
wolffd@0: 
- 
wolffd@0: netpak
- 
wolffd@0:  Combines weights and biases into one weights vector. 
wolffd@0: 
- 
wolffd@0: netunpak
- 
wolffd@0:  Separates weights vector into weight and bias matrices. 
wolffd@0: 
- 
wolffd@0: olgd
- 
wolffd@0:  On-line gradient descent optimization. 
wolffd@0: 
- 
wolffd@0: pca
- 
wolffd@0:  Principal Components Analysis 
wolffd@0: 
- 
wolffd@0: plotmat
- 
wolffd@0:  Display a matrix. 
wolffd@0: 
- 
wolffd@0: ppca
- 
wolffd@0:  Probabilistic Principal Components Analysis 
wolffd@0: 
- 
wolffd@0: quasinew
- 
wolffd@0:  Quasi-Newton optimization. 
wolffd@0: 
- 
wolffd@0: rbf
- 
wolffd@0:  Creates an RBF network with specified architecture 
wolffd@0: 
- 
wolffd@0: rbfbkp
- 
wolffd@0:  Backpropagate gradient of error function for RBF network. 
wolffd@0: 
- 
wolffd@0: rbfderiv
- 
wolffd@0:  Evaluate derivatives of RBF network outputs with respect to weights. 
wolffd@0: 
- 
wolffd@0: rbferr
- 
wolffd@0:  Evaluate error function for RBF network. 
wolffd@0: 
- 
wolffd@0: rbfevfwd
- 
wolffd@0:  Forward propagation with evidence for RBF 
wolffd@0: 
- 
wolffd@0: rbffwd
- 
wolffd@0:  Forward propagation through RBF network with linear outputs. 
wolffd@0: 
- 
wolffd@0: rbfgrad
- 
wolffd@0:  Evaluate gradient of error function for RBF network. 
wolffd@0: 
- 
wolffd@0: rbfhess
- 
wolffd@0:  Evaluate the Hessian matrix for RBF network. 
wolffd@0: 
- 
wolffd@0: rbfjacob
- 
wolffd@0:  Evaluate derivatives of RBF network outputs with respect to inputs. 
wolffd@0: 
- 
wolffd@0: rbfpak
- 
wolffd@0:  Combines all the parameters in an RBF network into one weights vector. 
wolffd@0: 
- 
wolffd@0: rbfprior
- 
wolffd@0:  Create Gaussian prior and output layer mask for RBF. 
wolffd@0: 
- 
wolffd@0: rbfsetbf
- 
wolffd@0:  Set basis functions of RBF from data. 
wolffd@0: 
- 
wolffd@0: rbfsetfw
- 
wolffd@0:  Set basis function widths of RBF. 
wolffd@0: 
- 
wolffd@0: rbftrain
- 
wolffd@0:  Two stage training of RBF network. 
wolffd@0: 
- 
wolffd@0: rbfunpak
- 
wolffd@0:  Separates a vector of RBF weights into its components. 
wolffd@0: 
- 
wolffd@0: rosegrad
- 
wolffd@0:  Calculate gradient of Rosenbrock's function. 
wolffd@0: 
- 
wolffd@0: rosen
- 
wolffd@0:  Calculate Rosenbrock's function. 
wolffd@0: 
- 
wolffd@0: scg
- 
wolffd@0:  Scaled conjugate gradient optimization. 
wolffd@0: 
- 
wolffd@0: som
- 
wolffd@0:  Creates a Self-Organising Map. 
wolffd@0: 
- 
wolffd@0: somfwd
- 
wolffd@0:  Forward propagation through a Self-Organising Map. 
wolffd@0: 
- 
wolffd@0: sompak
- 
wolffd@0:  Combines node weights into one weights matrix. 
wolffd@0: 
- 
wolffd@0: somtrain
- 
wolffd@0:  Kohonen training algorithm for SOM. 
wolffd@0: 
- 
wolffd@0: somunpak
- 
wolffd@0:  Replaces node weights in SOM. 
wolffd@0: 
wolffd@0: 
wolffd@0:
wolffd@0: Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
wolffd@0: 
wolffd@0: