wolffd@0: wolffd@0:
wolffd@0:wolffd@0: wolffd@0: d2 = somfwd(net, x) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
d2 = somfwd(net, x)
propagates the data matrix x
through
wolffd@0: a SOM net
, returning the squared distance matrix d2
with
wolffd@0: dimension nin
by num_nodes
. The $i$th row represents the
wolffd@0: squared Euclidean distance to each of the nodes of the SOM.
wolffd@0:
wolffd@0: [d2, win_nodes] = somfwd(net, x)
also returns the indices of the
wolffd@0: winning nodes for each pattern.
wolffd@0:
wolffd@0:
The following code fragment creates a SOM with a $5times 5$ map for an wolffd@0: 8-dimensional data space. It then applies the test data to the map. wolffd@0:
wolffd@0: wolffd@0: net = som(8, [5, 5]); wolffd@0: [d2, wn] = somfwd(net, test_data); wolffd@0:wolffd@0: wolffd@0: wolffd@0:
som
, somtrain
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: