wolffd@0: wolffd@0: wolffd@0: wolffd@0: Netlab Reference Manual demgauss wolffd@0: wolffd@0: wolffd@0: wolffd@0:

demgauss wolffd@0:

wolffd@0:

wolffd@0: Purpose wolffd@0:

wolffd@0: Demonstrate sampling from Gaussian distributions. wolffd@0: wolffd@0:

wolffd@0: Synopsis wolffd@0:

wolffd@0:
wolffd@0: demgauss
wolffd@0: 
wolffd@0: wolffd@0: wolffd@0:

wolffd@0: Description wolffd@0:

wolffd@0: wolffd@0:

demgauss provides a simple illustration of the generation of wolffd@0: data from Gaussian distributions. It first samples from a wolffd@0: one-dimensional distribution using randn, and then plots a wolffd@0: normalized histogram estimate of the distribution using histp wolffd@0: together with the true density calculated using gauss. wolffd@0: wolffd@0:

demgauss then demonstrates sampling from a Gaussian distribution wolffd@0: in two dimensions. It creates a mean vector and a covariance matrix, wolffd@0: and then plots contours of constant density using the function wolffd@0: gauss. A sample of points drawn from this distribution, obtained wolffd@0: using the function gsamp, is then superimposed on the contours. wolffd@0: wolffd@0:

wolffd@0: See Also wolffd@0:

wolffd@0: gauss, gsamp, histp
wolffd@0: Pages: wolffd@0: Index wolffd@0:
wolffd@0:

Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: