wolffd@0: wolffd@0: wolffd@0: wolffd@0: Netlab Reference Manual mlpderiv wolffd@0: wolffd@0: wolffd@0: wolffd@0:

mlpderiv wolffd@0:

wolffd@0:

wolffd@0: Purpose wolffd@0:

wolffd@0: Evaluate derivatives of network outputs with respect to weights. wolffd@0: wolffd@0:

wolffd@0: Synopsis wolffd@0:

wolffd@0:
wolffd@0: g = mlpderiv(net, x)
wolffd@0: wolffd@0: wolffd@0:

wolffd@0: Description wolffd@0:

wolffd@0: g = mlpderiv(net, x) takes a network data structure net wolffd@0: and a matrix of input vectors x and returns a three-index matrix wolffd@0: g whose i, j, k element contains the wolffd@0: derivative of network output k with respect to weight or bias wolffd@0: parameter j for input pattern i. The ordering of the wolffd@0: weight and bias parameters is defined by mlpunpak. wolffd@0: wolffd@0:

wolffd@0: See Also wolffd@0:

wolffd@0: mlp, mlppak, mlpgrad, mlpbkp
wolffd@0: Pages: wolffd@0: Index wolffd@0:
wolffd@0:

Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: