wolffd@0: wolffd@0:
wolffd@0:wolffd@0: gmmmixes = mdn2gmm(mdnmixes) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
gmmmixes = mdn2gmm(mdnmixes) takes an MDN mixture data structure
wolffd@0: mdnmixes
wolffd@0: containing three matrices (for priors, centres and variances) where each
wolffd@0: row represents the corresponding parameter values for a different mixture model 
wolffd@0: and creates an array of GMMs.  These can then be used with the standard
wolffd@0: Netlab Gaussian mixture model functions.
wolffd@0: 
wolffd@0: wolffd@0: wolffd@0: mdnmixes = mdnfwd(net, x); wolffd@0: mixes = mdn2gmm(mdnmixes); wolffd@0: p = gmmprob(mixes(1), y); wolffd@0:wolffd@0: wolffd@0: This creates an array GMM mixture models (one for each data point in wolffd@0:
x).  The vector p is then filled with the conditional
wolffd@0: probabilities of the values y given x(1,:).
wolffd@0: 
wolffd@0: gmm, mdn, mdnfwdCopyright (c) Ian T Nabney (1996-9) wolffd@0:
David J Evans (1998) wolffd@0: wolffd@0: wolffd@0: