wolffd@0: wolffd@0:
wolffd@0:wolffd@0: net = mdninit(net, prior) wolffd@0: net = mdninit(net, prior, t, options) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
net = mdninit(net, prior) takes a Mixture Density Network
wolffd@0: net and sets the weights and biases by sampling from a Gaussian
wolffd@0: distribution. It calls mlpinit for the MLP component of net.
wolffd@0:
wolffd@0:
net = mdninit(net, prior, t, options) uses the target data t to
wolffd@0: initialise the biases for the output units after initialising the
wolffd@0: other weights as above. It calls gmminit, with t and options
wolffd@0: as arguments, to obtain a model of the unconditional density of t. The
wolffd@0: biases are then set so that net will output the values in the Gaussian
wolffd@0: mixture model.
wolffd@0:
wolffd@0:
mdn, mlp, mlpinit, gmminitCopyright (c) Ian T Nabney (1996-9) wolffd@0:
David J Evans (1998) wolffd@0: wolffd@0: wolffd@0: