wolffd@0: wolffd@0:
wolffd@0:wolffd@0: g = gbayes(net, gdata) wolffd@0: [g, gdata, gprior] = gbayes(net, gdata) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
g = gbayes(net, gdata)
takes a network data structure net
together
wolffd@0: the data contribution to the error gradient
wolffd@0: for a set of inputs and targets.
wolffd@0: It returns the regularised error gradient using any zero mean Gaussian priors
wolffd@0: on the weights defined in
wolffd@0: net
. In addition, if a mask
is defined in net
, then
wolffd@0: the entries in g
that correspond to weights with a 0 in the
wolffd@0: mask are removed.
wolffd@0:
wolffd@0: [g, gdata, gprior] = gbayes(net, gdata)
additionally returns the
wolffd@0: data and prior components of the error.
wolffd@0:
wolffd@0:
errbayes
, glmgrad
, mlpgrad
, rbfgrad
Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: