wolffd@0: wolffd@0:
wolffd@0:wolffd@0: h = rbfhess(net, x, t) wolffd@0: [h, hdata] = rbfhess(net, x, t) wolffd@0: h = rbfhess(net, x, t, hdata) wolffd@0:wolffd@0: wolffd@0: wolffd@0:
h = rbfhess(net, x, t) takes an RBF network data structure net,
wolffd@0: a matrix x of input values, and a matrix t of target
wolffd@0: values and returns the full Hessian matrix h corresponding to
wolffd@0: the second derivatives of the negative log posterior distribution,
wolffd@0: evaluated for the current weight and bias values as defined by
wolffd@0: net.  Currently, the implementation only computes the
wolffd@0: Hessian for the output layer weights.
wolffd@0: 
wolffd@0: [h, hdata] = rbfhess(net, x, t) returns both the Hessian matrix
wolffd@0: h and the contribution hdata arising from the data dependent
wolffd@0: term in the Hessian.
wolffd@0: 
wolffd@0: 
h = rbfhess(net, x, t, hdata) takes a network data structure
wolffd@0: net, a matrix x of input values, and a matrix t of 
wolffd@0: target values, together with the contribution hdata arising from
wolffd@0: the data dependent term in the Hessian, and returns the full Hessian
wolffd@0: matrix h corresponding to the second derivatives of the negative
wolffd@0: log posterior distribution. This version saves computation time if
wolffd@0: hdata has already been evaluated for the current weight and bias
wolffd@0: values.
wolffd@0: 
wolffd@0: 
wolffd@0: wolffd@0: h = beta*hdata + alpha*I wolffd@0:wolffd@0: wolffd@0: wolffd@0:
mlphess, hesschek, evidenceCopyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: