wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: Netlab Reference Manual demprior
wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: demprior
wolffd@0:
wolffd@0:
wolffd@0: Purpose
wolffd@0:
wolffd@0: Demonstrate sampling from a multi-parameter Gaussian prior.
wolffd@0:
wolffd@0:
wolffd@0: Synopsis
wolffd@0:
wolffd@0:
wolffd@0: demprior
wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: Description
wolffd@0:
wolffd@0: This function plots the functions represented by a multi-layer perceptron
wolffd@0: network when the weights are set to values drawn from a Gaussian prior
wolffd@0: distribution. The parameters aw1
, ab1
aw2
and ab2
wolffd@0: control the inverse variances of the first-layer weights, the hidden unit
wolffd@0: biases, the second-layer weights and the output unit biases respectively.
wolffd@0: Their values can be adjusted on a logarithmic scale using the sliders, or
wolffd@0: by typing values into the text boxes and pressing the return key.
wolffd@0:
wolffd@0:
wolffd@0: See Also
wolffd@0:
wolffd@0: mlp
wolffd@0: Pages:
wolffd@0: Index
wolffd@0:
wolffd@0: Copyright (c) Ian T Nabney (1996-9)
wolffd@0:
wolffd@0:
wolffd@0:
wolffd@0: