wolffd@0: wolffd@0: wolffd@0: wolffd@0: Netlab Reference Manual mlpevfwd wolffd@0: wolffd@0: wolffd@0: wolffd@0:

mlpevfwd wolffd@0:

wolffd@0:

wolffd@0: Purpose wolffd@0:

wolffd@0: Forward propagation with evidence for MLP wolffd@0: wolffd@0:

wolffd@0: Synopsis wolffd@0:

wolffd@0:
wolffd@0: 
wolffd@0: [y, extra] = mlpevfwd(net, x, t, x_test)
wolffd@0: [y, extra, invhess] = mlpevfwd(net, x, t, x_test, invhess)
wolffd@0: 
wolffd@0: wolffd@0: wolffd@0:

wolffd@0: Description wolffd@0:

wolffd@0: y = mlpevfwd(net, x, t, x_test) takes a network data structure wolffd@0: net together with the input x and target t training data wolffd@0: and input test data x_test. wolffd@0: It returns the normal forward propagation through the network y wolffd@0: together with a matrix extra which consists of error bars (variance) wolffd@0: for a regression problem or moderated outputs for a classification problem. wolffd@0: The optional argument (and return value) wolffd@0: invhess is the inverse of the network Hessian wolffd@0: computed on the training data inputs and targets. Passing it in avoids wolffd@0: recomputing it, which can be a significant saving for large training sets. wolffd@0: wolffd@0:

wolffd@0: See Also wolffd@0:

wolffd@0: fevbayes
wolffd@0: Pages: wolffd@0: Index wolffd@0:
wolffd@0:

Copyright (c) Ian T Nabney (1996-9) wolffd@0: wolffd@0: wolffd@0: wolffd@0: