andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@45
|
27 #include <native/intr.h>
|
andrewm@0
|
28 #include <rtdk.h>
|
andrewm@0
|
29
|
andrewm@45
|
30 #include "../include/BeagleRT.h"
|
andrewm@0
|
31 #include "../include/PRU.h"
|
andrewm@0
|
32 #include "../include/I2c_Codec.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
andrewm@0
|
34
|
andrewm@45
|
35 // ARM interrupt number for PRU event EVTOUT7
|
andrewm@45
|
36 #define PRU_RTAUDIO_IRQ 21
|
andrewm@45
|
37
|
andrewm@0
|
38 using namespace std;
|
andrewm@0
|
39
|
andrewm@0
|
40 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
41 // can schedule
|
andrewm@0
|
42 typedef struct {
|
andrewm@0
|
43 RT_TASK task;
|
l@256
|
44 void (*argfunction)(void*);
|
l@256
|
45 void (*function)(void);
|
andrewm@0
|
46 char *name;
|
andrewm@0
|
47 int priority;
|
giuliomoro@174
|
48 bool started;
|
l@256
|
49 bool hasArgs;
|
l@254
|
50 void* args;
|
l@258
|
51 bool autoSchedule;
|
andrewm@0
|
52 } InternalAuxiliaryTask;
|
andrewm@0
|
53
|
andrewm@0
|
54 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@45
|
55 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
|
andrewm@0
|
56
|
andrewm@0
|
57 // Real-time tasks and objects
|
andrewm@0
|
58 RT_TASK gRTAudioThread;
|
andrewm@50
|
59 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
60 RT_INTR gRTAudioInterrupt;
|
andrewm@50
|
61 #endif
|
andrewm@0
|
62 PRU *gPRU = 0;
|
andrewm@0
|
63 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
64
|
giuliomoro@176
|
65 vector<InternalAuxiliaryTask*> &getAuxTasks(){
|
giuliomoro@176
|
66 static vector<InternalAuxiliaryTask*> auxTasks;
|
giuliomoro@176
|
67 return auxTasks;
|
giuliomoro@176
|
68 }
|
andrewm@0
|
69
|
andrewm@0
|
70 // Flag which tells the audio task to stop
|
giuliomoro@233
|
71 int gShouldStop = false;
|
andrewm@0
|
72
|
andrewm@0
|
73 // general settings
|
andrewm@45
|
74 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
|
andrewm@0
|
75 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
76 int gAmplifierMutePin = -1;
|
andrewm@5
|
77 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
78
|
andrewm@45
|
79 // Context which holds all the audio/sensor data passed to the render routines
|
andrewm@45
|
80 BeagleRTContext gContext;
|
andrewm@45
|
81
|
andrewm@45
|
82 // User data passed in from main()
|
andrewm@45
|
83 void *gUserData;
|
andrewm@0
|
84
|
andrewm@0
|
85 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
86 // audio, but does not actually start the calculations.
|
giuliomoro@178
|
87 // periodSize indicates the number of audio frames per period: the analog period size
|
giuliomoro@178
|
88 // will depend on the number of analog channels, in such a way that
|
giuliomoro@178
|
89 // analogPeriodSize = 4*periodSize/numAnalogChannels
|
giuliomoro@178
|
90 // In total, the audio latency in frames will be 2*periodSize,
|
andrewm@0
|
91 // plus any latency inherent in the ADCs and DACs themselves.
|
giuliomoro@19
|
92 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
|
giuliomoro@19
|
93 // numAnalogChannels indicates how many ADC and DAC channels to use.
|
andrewm@56
|
94 // userData is an opaque pointer which will be passed through to the setup()
|
andrewm@0
|
95 // function for application-specific use
|
andrewm@0
|
96 //
|
andrewm@0
|
97 // Returns 0 on success.
|
andrewm@0
|
98
|
andrewm@45
|
99 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
|
andrewm@0
|
100 {
|
andrewm@0
|
101 rt_print_auto_init(1);
|
andrewm@45
|
102
|
andrewm@45
|
103 BeagleRT_setVerboseLevel(settings->verbose);
|
andrewm@45
|
104 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
|
andrewm@45
|
105 gUserData = userData;
|
andrewm@45
|
106
|
andrewm@45
|
107 // Initialise context data structure
|
andrewm@45
|
108 memset(&gContext, 0, sizeof(BeagleRTContext));
|
andrewm@0
|
109
|
andrewm@5
|
110 if(gRTAudioVerbose) {
|
andrewm@5
|
111 cout << "Starting with period size " << settings->periodSize << "; ";
|
giuliomoro@19
|
112 if(settings->useAnalog)
|
giuliomoro@19
|
113 cout << "analog enabled\n";
|
andrewm@5
|
114 else
|
giuliomoro@19
|
115 cout << "analog disabled\n";
|
andrewm@5
|
116 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
117 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
118 if(settings->beginMuted)
|
andrewm@5
|
119 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
120 }
|
andrewm@0
|
121
|
andrewm@0
|
122 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
123 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
124 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
125 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
126
|
andrewm@5
|
127 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
128 if(gRTAudioVerbose)
|
giuliomoro@16
|
129 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
|
andrewm@0
|
130 }
|
andrewm@5
|
131 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
132 if(gRTAudioVerbose)
|
andrewm@0
|
133 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
134 return -1;
|
andrewm@0
|
135 }
|
andrewm@5
|
136 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
137 if(gRTAudioVerbose)
|
andrewm@0
|
138 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
139 return -1;
|
andrewm@0
|
140 }
|
andrewm@0
|
141 }
|
andrewm@0
|
142
|
giuliomoro@19
|
143 // Limit the analog channels to sane values
|
giuliomoro@19
|
144 if(settings->numAnalogChannels >= 8)
|
giuliomoro@19
|
145 settings->numAnalogChannels = 8;
|
giuliomoro@19
|
146 else if(settings->numAnalogChannels >= 4)
|
giuliomoro@19
|
147 settings->numAnalogChannels = 4;
|
andrewm@12
|
148 else
|
giuliomoro@19
|
149 settings->numAnalogChannels = 2;
|
andrewm@12
|
150
|
andrewm@45
|
151 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
|
andrewm@45
|
152 gContext.audioSampleRate = 44100.0;
|
andrewm@45
|
153 gContext.audioChannels = 2;
|
andrewm@45
|
154
|
andrewm@45
|
155 if(settings->useAnalog) {
|
giuliomoro@178
|
156 gContext.audioFrames = settings->periodSize;
|
andrewm@45
|
157
|
giuliomoro@178
|
158 gContext.analogFrames = gContext.audioFrames * 4 / settings->numAnalogChannels;
|
andrewm@45
|
159 gContext.analogChannels = settings->numAnalogChannels;
|
andrewm@45
|
160 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
|
andrewm@45
|
161 }
|
andrewm@45
|
162 else {
|
giuliomoro@178
|
163 gContext.audioFrames = settings->periodSize;
|
andrewm@45
|
164
|
andrewm@45
|
165 gContext.analogFrames = 0;
|
andrewm@45
|
166 gContext.analogChannels = 0;
|
andrewm@45
|
167 gContext.analogSampleRate = 0;
|
andrewm@45
|
168 }
|
andrewm@45
|
169
|
giuliomoro@178
|
170 // Sanity check the combination of channels and period size
|
giuliomoro@210
|
171 if( gContext.analogChannels != 0 && ((gContext.analogChannels <= 4 && gContext.analogFrames < 2) ||
|
giuliomoro@210
|
172 (gContext.analogChannels <= 2 && gContext.analogFrames < 4)) )
|
giuliomoro@178
|
173 {
|
giuliomoro@178
|
174 cout << "Error: " << gContext.analogChannels << " channels and period size of " << gContext.analogFrames << " not supported.\n";
|
giuliomoro@178
|
175 return 1;
|
giuliomoro@178
|
176 }
|
giuliomoro@178
|
177
|
andrewm@45
|
178 // For now, digital frame rate is equal to audio frame rate
|
andrewm@45
|
179 if(settings->useDigital) {
|
andrewm@45
|
180 gContext.digitalFrames = gContext.audioFrames;
|
andrewm@45
|
181 gContext.digitalSampleRate = gContext.audioSampleRate;
|
andrewm@45
|
182 gContext.digitalChannels = settings->numDigitalChannels;
|
andrewm@45
|
183 }
|
andrewm@45
|
184 else {
|
andrewm@45
|
185 gContext.digitalFrames = 0;
|
andrewm@45
|
186 gContext.digitalSampleRate = 0;
|
andrewm@45
|
187 gContext.digitalChannels = 0;
|
andrewm@45
|
188 }
|
andrewm@45
|
189
|
andrewm@45
|
190 // Set flags based on init settings
|
andrewm@45
|
191 if(settings->interleave)
|
andrewm@45
|
192 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
|
andrewm@45
|
193 if(settings->analogOutputsPersist)
|
andrewm@45
|
194 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
|
andrewm@45
|
195
|
andrewm@0
|
196 // Use PRU for audio
|
andrewm@45
|
197 gPRU = new PRU(&gContext);
|
andrewm@0
|
198 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
199
|
andrewm@45
|
200 // Initialise the GPIO pins, including possibly the digital pins in the render routines
|
andrewm@45
|
201 if(gPRU->prepareGPIO(1, 1)) {
|
andrewm@0
|
202 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
203 return 1;
|
andrewm@0
|
204 }
|
andrewm@45
|
205
|
andrewm@45
|
206 // Get the PRU memory buffers ready to go
|
giuliomoro@178
|
207 if(gPRU->initialise(0, gContext.analogFrames, gContext.analogChannels, true)) {
|
andrewm@0
|
208 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
209 return 1;
|
andrewm@0
|
210 }
|
andrewm@45
|
211
|
andrewm@45
|
212 // Prepare the audio codec, which clocks the whole system
|
andrewm@5
|
213 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
214 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
215 return 1;
|
andrewm@0
|
216 }
|
andrewm@0
|
217 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
218 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
219 return 1;
|
andrewm@0
|
220 }
|
giuliomoro@172
|
221
|
andrewm@5
|
222 // Set default volume levels
|
andrewm@5
|
223 BeagleRT_setDACLevel(settings->dacLevel);
|
andrewm@5
|
224 BeagleRT_setADCLevel(settings->adcLevel);
|
giuliomoro@174
|
225 // TODO: add more argument checks
|
giuliomoro@171
|
226 for(int n = 0; n < 2; n++){
|
giuliomoro@172
|
227 if(settings->pgaGain[n] > 59.5){
|
giuliomoro@172
|
228 std::cerr << "PGA gain out of range [0,59.5]\n";
|
giuliomoro@172
|
229 exit(1);
|
giuliomoro@172
|
230 }
|
giuliomoro@171
|
231 BeagleRT_setPgaGain(settings->pgaGain[n], n);
|
giuliomoro@171
|
232 }
|
andrewm@5
|
233 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
234
|
andrewm@45
|
235 // Call the user-defined initialisation function
|
andrewm@56
|
236 if(!setup(&gContext, userData)) {
|
andrewm@0
|
237 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
238 return 1;
|
andrewm@0
|
239 }
|
andrewm@0
|
240
|
andrewm@0
|
241 return 0;
|
andrewm@0
|
242 }
|
andrewm@0
|
243
|
andrewm@0
|
244 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
245 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
246 // turn will call the audio render() callback function every time
|
andrewm@0
|
247 // there is new data to process.
|
andrewm@0
|
248
|
andrewm@0
|
249 void audioLoop(void *)
|
andrewm@0
|
250 {
|
andrewm@0
|
251 if(gRTAudioVerbose==1)
|
andrewm@0
|
252 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
253
|
andrewm@0
|
254 // PRU audio
|
andrewm@0
|
255 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
256
|
andrewm@0
|
257 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
258 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
259 gShouldStop = 1;
|
andrewm@0
|
260 }
|
andrewm@0
|
261 else {
|
giuliomoro@16
|
262 if(gPRU->start(gPRUFilename)) {
|
giuliomoro@16
|
263 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
264 gShouldStop = 1;
|
andrewm@0
|
265 }
|
andrewm@0
|
266 else {
|
andrewm@0
|
267 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
268
|
andrewm@5
|
269 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
270 // First unmute the amplifier
|
andrewm@5
|
271 if(BeagleRT_muteSpeakers(0)) {
|
andrewm@5
|
272 if(gRTAudioVerbose)
|
andrewm@5
|
273 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
274 }
|
andrewm@0
|
275 }
|
andrewm@0
|
276
|
andrewm@50
|
277 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
278 gPRU->loop(&gRTAudioInterrupt, gUserData);
|
andrewm@50
|
279 #else
|
andrewm@50
|
280 gPRU->loop(0, gUserData);
|
andrewm@50
|
281 #endif
|
andrewm@0
|
282 // Now clean up
|
andrewm@0
|
283 // gPRU->waitForFinish();
|
andrewm@0
|
284 gPRU->disable();
|
andrewm@0
|
285 gAudioCodec->stopAudio();
|
andrewm@0
|
286 gPRU->cleanupGPIO();
|
andrewm@0
|
287 }
|
andrewm@0
|
288 }
|
andrewm@0
|
289
|
andrewm@0
|
290 if(gRTAudioVerbose == 1)
|
andrewm@0
|
291 rt_printf("audio thread ended\n");
|
andrewm@0
|
292 }
|
andrewm@0
|
293
|
andrewm@0
|
294 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@45
|
295 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
|
andrewm@45
|
296 // priority should be generally be less than this.
|
andrewm@0
|
297 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
l@258
|
298 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void* args), int priority, const char *name, void* args, bool autoSchedule)
|
andrewm@0
|
299 {
|
andrewm@0
|
300 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
301
|
andrewm@0
|
302 // Attempt to create the task
|
andrewm@0
|
303 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
304 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
305 free(newTask);
|
andrewm@0
|
306 return 0;
|
andrewm@0
|
307 }
|
andrewm@0
|
308
|
andrewm@0
|
309 // Populate the rest of the data structure and store it in the vector
|
l@256
|
310 newTask->argfunction = functionToCall;
|
andrewm@0
|
311 newTask->name = strdup(name);
|
andrewm@0
|
312 newTask->priority = priority;
|
giuliomoro@174
|
313 newTask->started = false;
|
l@254
|
314 newTask->args = args;
|
l@256
|
315 newTask->hasArgs = true;
|
l@258
|
316 newTask->autoSchedule = autoSchedule;
|
l@258
|
317
|
giuliomoro@176
|
318 getAuxTasks().push_back(newTask);
|
andrewm@0
|
319
|
andrewm@0
|
320 return (AuxiliaryTask)newTask;
|
andrewm@0
|
321 }
|
l@258
|
322 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name, bool autoSchedule)
|
l@256
|
323 {
|
l@256
|
324 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
l@258
|
325
|
l@256
|
326 // Attempt to create the task
|
l@256
|
327 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
l@256
|
328 cout << "Error: unable to create auxiliary task " << name << endl;
|
l@256
|
329 free(newTask);
|
l@256
|
330 return 0;
|
l@256
|
331 }
|
l@258
|
332
|
l@256
|
333 // Populate the rest of the data structure and store it in the vector
|
l@256
|
334 newTask->function = functionToCall;
|
l@256
|
335 newTask->name = strdup(name);
|
l@256
|
336 newTask->priority = priority;
|
l@256
|
337 newTask->started = false;
|
l@256
|
338 newTask->hasArgs = false;
|
l@258
|
339 newTask->autoSchedule = autoSchedule;
|
l@258
|
340
|
l@256
|
341 getAuxTasks().push_back(newTask);
|
l@258
|
342
|
l@256
|
343 return (AuxiliaryTask)newTask;
|
l@256
|
344 }
|
andrewm@0
|
345
|
giuliomoro@174
|
346 // Schedule a previously created (and started) auxiliary task. It will run when the priority rules next
|
andrewm@0
|
347 // allow it to be scheduled.
|
andrewm@47
|
348 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
349 {
|
andrewm@0
|
350 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
giuliomoro@174
|
351 if(taskToSchedule->started == false){ // Note: this is not the safest method to check if a task
|
giuliomoro@174
|
352 BeagleRT_startAuxiliaryTask(task); // is started (or ready to be resumed), but it probably is the fastest.
|
giuliomoro@174
|
353 // A safer approach would use rt_task_inquire()
|
giuliomoro@174
|
354 }
|
andrewm@0
|
355 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
356 }
|
l@258
|
357 void BeagleRT_autoScheduleAuxiliaryTasks(){
|
l@258
|
358 vector<InternalAuxiliaryTask*>::iterator it;
|
l@258
|
359 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
l@258
|
360 if ((InternalAuxiliaryTask *)(*it)->autoSchedule){
|
l@258
|
361 BeagleRT_scheduleAuxiliaryTask(*it);
|
l@258
|
362 }
|
l@258
|
363 }
|
l@258
|
364 }
|
andrewm@0
|
365
|
andrewm@0
|
366 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
367 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
368 // Treat the argument as containing the task structure
|
andrewm@0
|
369 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
370 {
|
l@256
|
371 InternalAuxiliaryTask *task = ((InternalAuxiliaryTask *)taskStruct);
|
l@256
|
372
|
andrewm@0
|
373 // Get function to call from the argument
|
l@256
|
374 void (*auxiliary_argfunction)(void* args) = task->argfunction;
|
l@256
|
375 void (*auxiliary_function)(void) = task->function;
|
l@256
|
376
|
l@258
|
377 // get the task's name
|
l@256
|
378 const char *name = task->name;
|
andrewm@0
|
379
|
andrewm@0
|
380 // Wait for a notification
|
andrewm@0
|
381 rt_task_suspend(NULL);
|
andrewm@0
|
382
|
andrewm@0
|
383 while(!gShouldStop) {
|
andrewm@0
|
384 // Then run the calculations
|
l@256
|
385 if (task->hasArgs)
|
l@256
|
386 auxiliary_argfunction(task->args);
|
l@256
|
387 else
|
l@256
|
388 auxiliary_function();
|
andrewm@0
|
389
|
andrewm@0
|
390 // Wait for a notification
|
andrewm@0
|
391 rt_task_suspend(NULL);
|
andrewm@0
|
392 }
|
andrewm@0
|
393
|
andrewm@0
|
394 if(gRTAudioVerbose == 1)
|
andrewm@0
|
395 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
396 }
|
andrewm@0
|
397
|
giuliomoro@174
|
398
|
giuliomoro@174
|
399 int BeagleRT_startAuxiliaryTask(AuxiliaryTask task){
|
giuliomoro@174
|
400 InternalAuxiliaryTask *taskStruct;
|
giuliomoro@174
|
401 taskStruct = (InternalAuxiliaryTask *)task;
|
giuliomoro@174
|
402 if(taskStruct->started == true)
|
giuliomoro@174
|
403 return 0;
|
giuliomoro@174
|
404 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
giuliomoro@174
|
405 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
giuliomoro@174
|
406 return -1;
|
giuliomoro@174
|
407 }
|
giuliomoro@174
|
408 taskStruct->started = true;
|
giuliomoro@174
|
409 return 0;
|
giuliomoro@174
|
410 }
|
giuliomoro@174
|
411
|
andrewm@0
|
412 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
413 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
414 // on success.
|
andrewm@0
|
415
|
andrewm@5
|
416 int BeagleRT_startAudio()
|
andrewm@0
|
417 {
|
andrewm@45
|
418 // Create audio thread with high Xenomai priority
|
andrewm@45
|
419 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
420 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
421 return -1;
|
andrewm@0
|
422 }
|
andrewm@0
|
423
|
andrewm@50
|
424 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
425 // Create an interrupt which the audio thread receives from the PRU
|
andrewm@45
|
426 int result = 0;
|
andrewm@45
|
427 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
|
andrewm@45
|
428 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
|
andrewm@45
|
429 return -1;
|
andrewm@45
|
430 }
|
andrewm@50
|
431 #endif
|
andrewm@45
|
432
|
andrewm@0
|
433 // Start all RT threads
|
andrewm@0
|
434 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
435 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
436 return -1;
|
andrewm@0
|
437 }
|
andrewm@0
|
438
|
andrewm@0
|
439 // The user may have created other tasks. Start those also.
|
andrewm@0
|
440 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
441 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
giuliomoro@177
|
442 int ret = BeagleRT_startAuxiliaryTask(*it);
|
giuliomoro@177
|
443 if(ret != 0)
|
giuliomoro@177
|
444 return -2;
|
andrewm@0
|
445 }
|
andrewm@0
|
446 return 0;
|
andrewm@0
|
447 }
|
andrewm@0
|
448
|
andrewm@0
|
449 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
450 // for the tasks to complete before returning.
|
andrewm@0
|
451
|
andrewm@5
|
452 void BeagleRT_stopAudio()
|
andrewm@0
|
453 {
|
andrewm@0
|
454 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
455 gShouldStop = true;
|
andrewm@0
|
456
|
andrewm@5
|
457 if(gRTAudioVerbose)
|
andrewm@5
|
458 cout << "Stopping audio...\n";
|
andrewm@5
|
459
|
andrewm@0
|
460 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
461 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
462
|
andrewm@0
|
463 // Stop all the auxiliary threads too
|
andrewm@0
|
464 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
465 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
andrewm@0
|
466 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
467
|
andrewm@0
|
468 // Wake up each thread and join it
|
andrewm@0
|
469 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
470 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
471 }
|
andrewm@0
|
472 }
|
andrewm@0
|
473
|
andrewm@0
|
474 // Free any resources associated with PRU real-time audio
|
andrewm@5
|
475 void BeagleRT_cleanupAudio()
|
andrewm@0
|
476 {
|
andrewm@56
|
477 cleanup(&gContext, gUserData);
|
andrewm@0
|
478
|
andrewm@0
|
479 // Clean up the auxiliary tasks
|
andrewm@0
|
480 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
481 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
andrewm@0
|
482 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
483
|
andrewm@45
|
484 // Delete the task
|
andrewm@45
|
485 rt_task_delete(&taskStruct->task);
|
andrewm@45
|
486
|
andrewm@0
|
487 // Free the name string and the struct itself
|
andrewm@0
|
488 free(taskStruct->name);
|
andrewm@0
|
489 free(taskStruct);
|
andrewm@0
|
490 }
|
giuliomoro@176
|
491 getAuxTasks().clear();
|
andrewm@0
|
492
|
andrewm@45
|
493 // Delete the audio task and its interrupt
|
andrewm@50
|
494 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
495 rt_intr_delete(&gRTAudioInterrupt);
|
andrewm@50
|
496 #endif
|
andrewm@45
|
497 rt_task_delete(&gRTAudioThread);
|
andrewm@45
|
498
|
andrewm@0
|
499 if(gPRU != 0)
|
andrewm@0
|
500 delete gPRU;
|
andrewm@0
|
501 if(gAudioCodec != 0)
|
andrewm@0
|
502 delete gAudioCodec;
|
andrewm@0
|
503
|
andrewm@0
|
504 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
505 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
506 gAmplifierMutePin = -1;
|
andrewm@0
|
507 }
|
andrewm@0
|
508
|
andrewm@5
|
509 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
510 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
511 int BeagleRT_setDACLevel(float decibels)
|
andrewm@5
|
512 {
|
andrewm@5
|
513 if(gAudioCodec == 0)
|
andrewm@5
|
514 return -1;
|
andrewm@5
|
515 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
516 }
|
andrewm@5
|
517
|
andrewm@5
|
518 // Set the level of the ADC
|
andrewm@5
|
519 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
andrewm@5
|
520 int BeagleRT_setADCLevel(float decibels)
|
andrewm@5
|
521 {
|
andrewm@5
|
522 if(gAudioCodec == 0)
|
andrewm@5
|
523 return -1;
|
andrewm@5
|
524 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
525 }
|
andrewm@5
|
526
|
giuliomoro@171
|
527 // Set the level of the Programmable Gain Amplifier
|
giuliomoro@171
|
528 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
|
giuliomoro@171
|
529 int BeagleRT_setPgaGain(float decibels, int channel){
|
giuliomoro@171
|
530 if(gAudioCodec == 0)
|
giuliomoro@171
|
531 return -1;
|
giuliomoro@171
|
532 return gAudioCodec->setPga(decibels, channel);
|
giuliomoro@171
|
533 }
|
giuliomoro@171
|
534
|
andrewm@5
|
535 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
536 // output only (not line out or speaker)
|
andrewm@5
|
537 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
538 int BeagleRT_setHeadphoneLevel(float decibels)
|
andrewm@5
|
539 {
|
andrewm@5
|
540 if(gAudioCodec == 0)
|
andrewm@5
|
541 return -1;
|
andrewm@5
|
542 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
543 }
|
andrewm@5
|
544
|
andrewm@5
|
545 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
546 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
547 // Returns 0 on success
|
andrewm@5
|
548 int BeagleRT_muteSpeakers(int mute)
|
andrewm@5
|
549 {
|
andrewm@5
|
550 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
551
|
andrewm@5
|
552 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
553 if(gAmplifierMutePin < 0)
|
andrewm@5
|
554 return -1;
|
andrewm@5
|
555
|
andrewm@5
|
556 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
557 }
|
andrewm@5
|
558
|
andrewm@0
|
559 // Set the verbosity level
|
andrewm@45
|
560 void BeagleRT_setVerboseLevel(int level)
|
andrewm@0
|
561 {
|
andrewm@0
|
562 gRTAudioVerbose = level;
|
andrewm@0
|
563 }
|