annotate core/RTAudio.cpp @ 174:1e629f126322

AuxiliaryTask can now be scheduled from setup(). Closes #1373
author Giulio Moro <giuliomoro@yahoo.it>
date Mon, 28 Dec 2015 13:53:11 +0100
parents 5f4408705eed
children 9bfe04d184fb fb2cf9c00024
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@45 27 #include <native/intr.h>
andrewm@0 28 #include <rtdk.h>
andrewm@0 29
andrewm@45 30 #include "../include/BeagleRT.h"
andrewm@0 31 #include "../include/PRU.h"
andrewm@0 32 #include "../include/I2c_Codec.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@45 35 // ARM interrupt number for PRU event EVTOUT7
andrewm@45 36 #define PRU_RTAUDIO_IRQ 21
andrewm@45 37
andrewm@0 38 using namespace std;
andrewm@0 39
andrewm@0 40 // Data structure to keep track of auxiliary tasks we
andrewm@0 41 // can schedule
andrewm@0 42 typedef struct {
andrewm@0 43 RT_TASK task;
andrewm@0 44 void (*function)(void);
andrewm@0 45 char *name;
andrewm@0 46 int priority;
giuliomoro@174 47 bool started;
andrewm@0 48 } InternalAuxiliaryTask;
andrewm@0 49
andrewm@0 50 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@45 51 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
andrewm@0 52
andrewm@0 53 // Real-time tasks and objects
andrewm@0 54 RT_TASK gRTAudioThread;
andrewm@50 55 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 56 RT_INTR gRTAudioInterrupt;
andrewm@50 57 #endif
andrewm@0 58 PRU *gPRU = 0;
andrewm@0 59 I2c_Codec *gAudioCodec = 0;
andrewm@0 60
andrewm@0 61 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 62
andrewm@0 63 // Flag which tells the audio task to stop
andrewm@0 64 bool gShouldStop = false;
andrewm@0 65
andrewm@0 66 // general settings
andrewm@45 67 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
andrewm@0 68 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 69 int gAmplifierMutePin = -1;
andrewm@5 70 int gAmplifierShouldBeginMuted = 0;
andrewm@0 71
andrewm@45 72 // Context which holds all the audio/sensor data passed to the render routines
andrewm@45 73 BeagleRTContext gContext;
andrewm@45 74
andrewm@45 75 // User data passed in from main()
andrewm@45 76 void *gUserData;
andrewm@0 77
andrewm@0 78 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 79 // audio, but does not actually start the calculations.
andrewm@0 80 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 81 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 82 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 83 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 84 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@56 85 // userData is an opaque pointer which will be passed through to the setup()
andrewm@0 86 // function for application-specific use
andrewm@0 87 //
andrewm@0 88 // Returns 0 on success.
andrewm@0 89
andrewm@45 90 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
andrewm@0 91 {
andrewm@0 92 rt_print_auto_init(1);
andrewm@45 93
andrewm@45 94 BeagleRT_setVerboseLevel(settings->verbose);
andrewm@45 95 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
andrewm@45 96 gUserData = userData;
andrewm@45 97
andrewm@45 98 // Initialise context data structure
andrewm@45 99 memset(&gContext, 0, sizeof(BeagleRTContext));
andrewm@0 100
andrewm@5 101 if(gRTAudioVerbose) {
andrewm@5 102 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 103 if(settings->useAnalog)
giuliomoro@19 104 cout << "analog enabled\n";
andrewm@5 105 else
giuliomoro@19 106 cout << "analog disabled\n";
andrewm@5 107 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 108 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 109 if(settings->beginMuted)
andrewm@5 110 cout << "Beginning with speaker muted\n";
andrewm@5 111 }
andrewm@0 112
andrewm@0 113 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 114 if(settings->ampMutePin >= 0) {
andrewm@5 115 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 116 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 117
andrewm@5 118 if(gpio_export(settings->ampMutePin)) {
andrewm@0 119 if(gRTAudioVerbose)
giuliomoro@16 120 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 121 }
andrewm@5 122 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 123 if(gRTAudioVerbose)
andrewm@0 124 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 125 return -1;
andrewm@0 126 }
andrewm@5 127 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 128 if(gRTAudioVerbose)
andrewm@0 129 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 130 return -1;
andrewm@0 131 }
andrewm@0 132 }
andrewm@0 133
giuliomoro@19 134 // Limit the analog channels to sane values
giuliomoro@19 135 if(settings->numAnalogChannels >= 8)
giuliomoro@19 136 settings->numAnalogChannels = 8;
giuliomoro@19 137 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 138 settings->numAnalogChannels = 4;
andrewm@12 139 else
giuliomoro@19 140 settings->numAnalogChannels = 2;
andrewm@12 141
andrewm@12 142 // Sanity check the combination of channels and period size
giuliomoro@19 143 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
giuliomoro@19 144 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 145 return 1;
andrewm@12 146 }
giuliomoro@19 147 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
giuliomoro@19 148 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 149 return 1;
andrewm@12 150 }
andrewm@12 151
andrewm@45 152 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
andrewm@45 153 gContext.audioSampleRate = 44100.0;
andrewm@45 154 gContext.audioChannels = 2;
andrewm@45 155
andrewm@45 156 if(settings->useAnalog) {
andrewm@45 157 gContext.audioFrames = settings->periodSize * settings->numAnalogChannels / 4;
andrewm@45 158
andrewm@45 159 gContext.analogFrames = settings->periodSize;
andrewm@45 160 gContext.analogChannels = settings->numAnalogChannels;
andrewm@45 161 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@45 162 }
andrewm@45 163 else {
andrewm@45 164 gContext.audioFrames = settings->periodSize * 2;
andrewm@45 165
andrewm@45 166 gContext.analogFrames = 0;
andrewm@45 167 gContext.analogChannels = 0;
andrewm@45 168 gContext.analogSampleRate = 0;
andrewm@45 169 }
andrewm@45 170
andrewm@45 171 // For now, digital frame rate is equal to audio frame rate
andrewm@45 172 if(settings->useDigital) {
andrewm@45 173 gContext.digitalFrames = gContext.audioFrames;
andrewm@45 174 gContext.digitalSampleRate = gContext.audioSampleRate;
andrewm@45 175 gContext.digitalChannels = settings->numDigitalChannels;
andrewm@45 176 }
andrewm@45 177 else {
andrewm@45 178 gContext.digitalFrames = 0;
andrewm@45 179 gContext.digitalSampleRate = 0;
andrewm@45 180 gContext.digitalChannels = 0;
andrewm@45 181 }
andrewm@45 182
andrewm@45 183 // Set flags based on init settings
andrewm@45 184 if(settings->interleave)
andrewm@45 185 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
andrewm@45 186 if(settings->analogOutputsPersist)
andrewm@45 187 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
andrewm@45 188
andrewm@0 189 // Use PRU for audio
andrewm@45 190 gPRU = new PRU(&gContext);
andrewm@0 191 gAudioCodec = new I2c_Codec();
andrewm@0 192
andrewm@45 193 // Initialise the GPIO pins, including possibly the digital pins in the render routines
andrewm@45 194 if(gPRU->prepareGPIO(1, 1)) {
andrewm@0 195 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 196 return 1;
andrewm@0 197 }
andrewm@45 198
andrewm@45 199 // Get the PRU memory buffers ready to go
giuliomoro@19 200 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
andrewm@0 201 cout << "Error: unable to initialise PRU\n";
andrewm@0 202 return 1;
andrewm@0 203 }
andrewm@45 204
andrewm@45 205 // Prepare the audio codec, which clocks the whole system
andrewm@5 206 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 207 cout << "Unable to open codec I2C\n";
andrewm@0 208 return 1;
andrewm@0 209 }
andrewm@0 210 if(gAudioCodec->initCodec()) {
andrewm@0 211 cout << "Error: unable to initialise audio codec\n";
andrewm@0 212 return 1;
andrewm@0 213 }
giuliomoro@172 214
andrewm@5 215 // Set default volume levels
andrewm@5 216 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 217 BeagleRT_setADCLevel(settings->adcLevel);
giuliomoro@174 218 // TODO: add more argument checks
giuliomoro@171 219 for(int n = 0; n < 2; n++){
giuliomoro@172 220 if(settings->pgaGain[n] > 59.5){
giuliomoro@172 221 std::cerr << "PGA gain out of range [0,59.5]\n";
giuliomoro@172 222 exit(1);
giuliomoro@172 223 }
giuliomoro@171 224 BeagleRT_setPgaGain(settings->pgaGain[n], n);
giuliomoro@171 225 }
andrewm@5 226 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 227
andrewm@45 228 // Call the user-defined initialisation function
andrewm@56 229 if(!setup(&gContext, userData)) {
andrewm@0 230 cout << "Couldn't initialise audio rendering\n";
andrewm@0 231 return 1;
andrewm@0 232 }
andrewm@0 233
andrewm@0 234 return 0;
andrewm@0 235 }
andrewm@0 236
andrewm@0 237 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 238 // and then transfers control to the PRU object. The PRU object in
andrewm@0 239 // turn will call the audio render() callback function every time
andrewm@0 240 // there is new data to process.
andrewm@0 241
andrewm@0 242 void audioLoop(void *)
andrewm@0 243 {
andrewm@0 244 if(gRTAudioVerbose==1)
andrewm@0 245 rt_printf("_________________Audio Thread!\n");
andrewm@0 246
andrewm@0 247 // PRU audio
andrewm@0 248 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 249
andrewm@0 250 if(gAudioCodec->startAudio(0)) {
andrewm@0 251 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 252 gShouldStop = 1;
andrewm@0 253 }
andrewm@0 254 else {
giuliomoro@16 255 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 256 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 257 gShouldStop = 1;
andrewm@0 258 }
andrewm@0 259 else {
andrewm@0 260 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 261
andrewm@5 262 if(!gAmplifierShouldBeginMuted) {
andrewm@5 263 // First unmute the amplifier
andrewm@5 264 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 265 if(gRTAudioVerbose)
andrewm@5 266 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 267 }
andrewm@0 268 }
andrewm@0 269
andrewm@50 270 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 271 gPRU->loop(&gRTAudioInterrupt, gUserData);
andrewm@50 272 #else
andrewm@50 273 gPRU->loop(0, gUserData);
andrewm@50 274 #endif
andrewm@0 275 // Now clean up
andrewm@0 276 // gPRU->waitForFinish();
andrewm@0 277 gPRU->disable();
andrewm@0 278 gAudioCodec->stopAudio();
andrewm@0 279 gPRU->cleanupGPIO();
andrewm@0 280 }
andrewm@0 281 }
andrewm@0 282
andrewm@0 283 if(gRTAudioVerbose == 1)
andrewm@0 284 rt_printf("audio thread ended\n");
andrewm@0 285 }
andrewm@0 286
andrewm@0 287 // Create a calculation loop which can run independently of the audio, at a different
andrewm@45 288 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
andrewm@45 289 // priority should be generally be less than this.
andrewm@0 290 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@47 291 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 292 {
andrewm@0 293 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 294
andrewm@0 295 // Attempt to create the task
andrewm@0 296 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 297 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 298 free(newTask);
andrewm@0 299 return 0;
andrewm@0 300 }
andrewm@0 301
andrewm@0 302 // Populate the rest of the data structure and store it in the vector
andrewm@0 303 newTask->function = functionToCall;
andrewm@0 304 newTask->name = strdup(name);
andrewm@0 305 newTask->priority = priority;
giuliomoro@174 306 newTask->started = false;
andrewm@0 307
andrewm@0 308 gAuxTasks.push_back(newTask);
andrewm@0 309
andrewm@0 310 return (AuxiliaryTask)newTask;
andrewm@0 311 }
andrewm@0 312
giuliomoro@174 313 // Schedule a previously created (and started) auxiliary task. It will run when the priority rules next
andrewm@0 314 // allow it to be scheduled.
andrewm@47 315 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 316 {
andrewm@0 317 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
giuliomoro@174 318 if(taskToSchedule->started == false){ // Note: this is not the safest method to check if a task
giuliomoro@174 319 BeagleRT_startAuxiliaryTask(task); // is started (or ready to be resumed), but it probably is the fastest.
giuliomoro@174 320 // A safer approach would use rt_task_inquire()
giuliomoro@174 321 }
andrewm@0 322 rt_task_resume(&taskToSchedule->task);
andrewm@0 323 }
andrewm@0 324
andrewm@0 325 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 326 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 327 // Treat the argument as containing the task structure
andrewm@0 328 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 329 {
andrewm@0 330 // Get function to call from the argument
andrewm@0 331 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 332 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 333
andrewm@0 334 // Wait for a notification
andrewm@0 335 rt_task_suspend(NULL);
andrewm@0 336
andrewm@0 337 while(!gShouldStop) {
andrewm@0 338 // Then run the calculations
andrewm@0 339 auxiliary_function();
andrewm@0 340
andrewm@0 341 // Wait for a notification
andrewm@0 342 rt_task_suspend(NULL);
andrewm@0 343 }
andrewm@0 344
andrewm@0 345 if(gRTAudioVerbose == 1)
andrewm@0 346 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 347 }
andrewm@0 348
giuliomoro@174 349
giuliomoro@174 350 int BeagleRT_startAuxiliaryTask(AuxiliaryTask task){
giuliomoro@174 351 InternalAuxiliaryTask *taskStruct;
giuliomoro@174 352 taskStruct = (InternalAuxiliaryTask *)task;
giuliomoro@174 353 if(taskStruct->started == true)
giuliomoro@174 354 return 0;
giuliomoro@174 355 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
giuliomoro@174 356 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
giuliomoro@174 357 return -1;
giuliomoro@174 358 }
giuliomoro@174 359 taskStruct->started = true;
giuliomoro@174 360 return 0;
giuliomoro@174 361 }
giuliomoro@174 362
andrewm@0 363 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 364 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 365 // on success.
andrewm@0 366
andrewm@5 367 int BeagleRT_startAudio()
andrewm@0 368 {
andrewm@45 369 // Create audio thread with high Xenomai priority
andrewm@45 370 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
andrewm@0 371 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 372 return -1;
andrewm@0 373 }
andrewm@0 374
andrewm@50 375 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 376 // Create an interrupt which the audio thread receives from the PRU
andrewm@45 377 int result = 0;
andrewm@45 378 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
andrewm@45 379 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
andrewm@45 380 return -1;
andrewm@45 381 }
andrewm@50 382 #endif
andrewm@45 383
andrewm@0 384 // Start all RT threads
andrewm@0 385 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 386 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 387 return -1;
andrewm@0 388 }
andrewm@0 389
andrewm@0 390 // The user may have created other tasks. Start those also.
andrewm@0 391 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 392 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
giuliomoro@174 393 return BeagleRT_startAuxiliaryTask(*it);
andrewm@0 394 }
andrewm@0 395
andrewm@0 396 return 0;
andrewm@0 397 }
andrewm@0 398
andrewm@0 399 // Stop the PRU-based audio from running and wait
andrewm@0 400 // for the tasks to complete before returning.
andrewm@0 401
andrewm@5 402 void BeagleRT_stopAudio()
andrewm@0 403 {
andrewm@0 404 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 405 gShouldStop = true;
andrewm@0 406
andrewm@5 407 if(gRTAudioVerbose)
andrewm@5 408 cout << "Stopping audio...\n";
andrewm@5 409
andrewm@0 410 // Now wait for threads to respond and actually stop...
andrewm@0 411 rt_task_join(&gRTAudioThread);
andrewm@0 412
andrewm@0 413 // Stop all the auxiliary threads too
andrewm@0 414 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 415 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 416 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 417
andrewm@0 418 // Wake up each thread and join it
andrewm@0 419 rt_task_resume(&(taskStruct->task));
andrewm@0 420 rt_task_join(&(taskStruct->task));
andrewm@0 421 }
andrewm@0 422 }
andrewm@0 423
andrewm@0 424 // Free any resources associated with PRU real-time audio
andrewm@5 425 void BeagleRT_cleanupAudio()
andrewm@0 426 {
andrewm@56 427 cleanup(&gContext, gUserData);
andrewm@0 428
andrewm@0 429 // Clean up the auxiliary tasks
andrewm@0 430 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 431 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 432 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 433
andrewm@45 434 // Delete the task
andrewm@45 435 rt_task_delete(&taskStruct->task);
andrewm@45 436
andrewm@0 437 // Free the name string and the struct itself
andrewm@0 438 free(taskStruct->name);
andrewm@0 439 free(taskStruct);
andrewm@0 440 }
andrewm@0 441 gAuxTasks.clear();
andrewm@0 442
andrewm@45 443 // Delete the audio task and its interrupt
andrewm@50 444 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 445 rt_intr_delete(&gRTAudioInterrupt);
andrewm@50 446 #endif
andrewm@45 447 rt_task_delete(&gRTAudioThread);
andrewm@45 448
andrewm@0 449 if(gPRU != 0)
andrewm@0 450 delete gPRU;
andrewm@0 451 if(gAudioCodec != 0)
andrewm@0 452 delete gAudioCodec;
andrewm@0 453
andrewm@0 454 if(gAmplifierMutePin >= 0)
andrewm@0 455 gpio_unexport(gAmplifierMutePin);
andrewm@0 456 gAmplifierMutePin = -1;
andrewm@0 457 }
andrewm@0 458
andrewm@5 459 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 460 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 461 int BeagleRT_setDACLevel(float decibels)
andrewm@5 462 {
andrewm@5 463 if(gAudioCodec == 0)
andrewm@5 464 return -1;
andrewm@5 465 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 466 }
andrewm@5 467
andrewm@5 468 // Set the level of the ADC
andrewm@5 469 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 470 int BeagleRT_setADCLevel(float decibels)
andrewm@5 471 {
andrewm@5 472 if(gAudioCodec == 0)
andrewm@5 473 return -1;
andrewm@5 474 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 475 }
andrewm@5 476
giuliomoro@171 477 // Set the level of the Programmable Gain Amplifier
giuliomoro@171 478 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
giuliomoro@171 479 int BeagleRT_setPgaGain(float decibels, int channel){
giuliomoro@171 480 if(gAudioCodec == 0)
giuliomoro@171 481 return -1;
giuliomoro@171 482 return gAudioCodec->setPga(decibels, channel);
giuliomoro@171 483 }
giuliomoro@171 484
andrewm@5 485 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 486 // output only (not line out or speaker)
andrewm@5 487 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 488 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 489 {
andrewm@5 490 if(gAudioCodec == 0)
andrewm@5 491 return -1;
andrewm@5 492 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 493 }
andrewm@5 494
andrewm@5 495 // Mute or unmute the onboard speaker amplifiers
andrewm@5 496 // mute == 0 means unmute; otherwise mute
andrewm@5 497 // Returns 0 on success
andrewm@5 498 int BeagleRT_muteSpeakers(int mute)
andrewm@5 499 {
andrewm@5 500 int pinValue = mute ? LOW : HIGH;
andrewm@5 501
andrewm@5 502 // Check that we have an enabled pin for controlling the mute
andrewm@5 503 if(gAmplifierMutePin < 0)
andrewm@5 504 return -1;
andrewm@5 505
andrewm@5 506 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 507 }
andrewm@5 508
andrewm@0 509 // Set the verbosity level
andrewm@45 510 void BeagleRT_setVerboseLevel(int level)
andrewm@0 511 {
andrewm@0 512 gRTAudioVerbose = level;
andrewm@0 513 }