annotate core/RTAudio.cpp @ 47:643cbee74eda newapi

First draft of Doxygen documentation
author andrewm
date Thu, 28 May 2015 17:06:03 -0400
parents 579c86316008
children be427da6fb9c
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@45 27 #include <native/intr.h>
andrewm@0 28 #include <rtdk.h>
andrewm@0 29
andrewm@45 30 #include "../include/BeagleRT.h"
andrewm@0 31 #include "../include/PRU.h"
andrewm@0 32 #include "../include/I2c_Codec.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
giuliomoro@24 34 #include "../include/client.h"
andrewm@0 35
andrewm@45 36 // ARM interrupt number for PRU event EVTOUT7
andrewm@45 37 #define PRU_RTAUDIO_IRQ 21
andrewm@45 38
andrewm@0 39 using namespace std;
andrewm@0 40
andrewm@0 41 // Data structure to keep track of auxiliary tasks we
andrewm@0 42 // can schedule
andrewm@0 43 typedef struct {
andrewm@0 44 RT_TASK task;
andrewm@0 45 void (*function)(void);
andrewm@0 46 char *name;
andrewm@0 47 int priority;
andrewm@0 48 } InternalAuxiliaryTask;
andrewm@0 49
andrewm@0 50 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@45 51 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
andrewm@0 52
andrewm@0 53 // Real-time tasks and objects
andrewm@0 54 RT_TASK gRTAudioThread;
andrewm@45 55 RT_INTR gRTAudioInterrupt;
andrewm@0 56 PRU *gPRU = 0;
andrewm@0 57 I2c_Codec *gAudioCodec = 0;
andrewm@0 58
andrewm@0 59 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 60
andrewm@0 61 // Flag which tells the audio task to stop
andrewm@0 62 bool gShouldStop = false;
andrewm@0 63
andrewm@0 64 // general settings
andrewm@45 65 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
andrewm@0 66 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 67 int gAmplifierMutePin = -1;
andrewm@5 68 int gAmplifierShouldBeginMuted = 0;
andrewm@0 69
andrewm@45 70 // Context which holds all the audio/sensor data passed to the render routines
andrewm@45 71 BeagleRTContext gContext;
andrewm@45 72
andrewm@45 73 // User data passed in from main()
andrewm@45 74 void *gUserData;
andrewm@0 75
andrewm@0 76 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 77 // audio, but does not actually start the calculations.
andrewm@0 78 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 79 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 80 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 81 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 82 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@0 83 // userData is an opaque pointer which will be passed through to the initialise_render()
andrewm@0 84 // function for application-specific use
andrewm@0 85 //
andrewm@0 86 // Returns 0 on success.
andrewm@0 87
andrewm@45 88 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
andrewm@0 89 {
andrewm@0 90 rt_print_auto_init(1);
andrewm@45 91
andrewm@45 92 BeagleRT_setVerboseLevel(settings->verbose);
andrewm@45 93 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
andrewm@45 94 gUserData = userData;
andrewm@45 95
andrewm@45 96 // Initialise context data structure
andrewm@45 97 memset(&gContext, 0, sizeof(BeagleRTContext));
andrewm@0 98
andrewm@5 99 if(gRTAudioVerbose) {
andrewm@5 100 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 101 if(settings->useAnalog)
giuliomoro@19 102 cout << "analog enabled\n";
andrewm@5 103 else
giuliomoro@19 104 cout << "analog disabled\n";
andrewm@5 105 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 106 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 107 if(settings->beginMuted)
andrewm@5 108 cout << "Beginning with speaker muted\n";
andrewm@5 109 }
andrewm@0 110
andrewm@0 111 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 112 if(settings->ampMutePin >= 0) {
andrewm@5 113 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 114 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 115
andrewm@5 116 if(gpio_export(settings->ampMutePin)) {
andrewm@0 117 if(gRTAudioVerbose)
giuliomoro@16 118 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 119 }
andrewm@5 120 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 121 if(gRTAudioVerbose)
andrewm@0 122 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 123 return -1;
andrewm@0 124 }
andrewm@5 125 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 126 if(gRTAudioVerbose)
andrewm@0 127 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 128 return -1;
andrewm@0 129 }
andrewm@0 130 }
andrewm@0 131
giuliomoro@19 132 // Limit the analog channels to sane values
giuliomoro@19 133 if(settings->numAnalogChannels >= 8)
giuliomoro@19 134 settings->numAnalogChannels = 8;
giuliomoro@19 135 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 136 settings->numAnalogChannels = 4;
andrewm@12 137 else
giuliomoro@19 138 settings->numAnalogChannels = 2;
andrewm@12 139
andrewm@12 140 // Sanity check the combination of channels and period size
giuliomoro@19 141 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
giuliomoro@19 142 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 143 return 1;
andrewm@12 144 }
giuliomoro@19 145 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
giuliomoro@19 146 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 147 return 1;
andrewm@12 148 }
andrewm@12 149
andrewm@45 150 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
andrewm@45 151 gContext.audioSampleRate = 44100.0;
andrewm@45 152 gContext.audioChannels = 2;
andrewm@45 153
andrewm@45 154 if(settings->useAnalog) {
andrewm@45 155 gContext.audioFrames = settings->periodSize * settings->numAnalogChannels / 4;
andrewm@45 156
andrewm@45 157 gContext.analogFrames = settings->periodSize;
andrewm@45 158 gContext.analogChannels = settings->numAnalogChannels;
andrewm@45 159 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@45 160 }
andrewm@45 161 else {
andrewm@45 162 gContext.audioFrames = settings->periodSize * 2;
andrewm@45 163
andrewm@45 164 gContext.analogFrames = 0;
andrewm@45 165 gContext.analogChannels = 0;
andrewm@45 166 gContext.analogSampleRate = 0;
andrewm@45 167 }
andrewm@45 168
andrewm@45 169 // For now, digital frame rate is equal to audio frame rate
andrewm@45 170 if(settings->useDigital) {
andrewm@45 171 gContext.digitalFrames = gContext.audioFrames;
andrewm@45 172 gContext.digitalSampleRate = gContext.audioSampleRate;
andrewm@45 173 gContext.digitalChannels = settings->numDigitalChannels;
andrewm@45 174 }
andrewm@45 175 else {
andrewm@45 176 gContext.digitalFrames = 0;
andrewm@45 177 gContext.digitalSampleRate = 0;
andrewm@45 178 gContext.digitalChannels = 0;
andrewm@45 179 }
andrewm@45 180
andrewm@45 181 // Set flags based on init settings
andrewm@45 182 if(settings->interleave)
andrewm@45 183 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
andrewm@45 184 if(settings->analogOutputsPersist)
andrewm@45 185 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
andrewm@45 186
andrewm@0 187 // Use PRU for audio
andrewm@45 188 gPRU = new PRU(&gContext);
andrewm@0 189 gAudioCodec = new I2c_Codec();
andrewm@0 190
andrewm@45 191 // Initialise the GPIO pins, including possibly the digital pins in the render routines
andrewm@45 192 if(gPRU->prepareGPIO(1, 1)) {
andrewm@0 193 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 194 return 1;
andrewm@0 195 }
andrewm@45 196
andrewm@45 197 // Get the PRU memory buffers ready to go
giuliomoro@19 198 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
andrewm@0 199 cout << "Error: unable to initialise PRU\n";
andrewm@0 200 return 1;
andrewm@0 201 }
andrewm@45 202
andrewm@45 203 // Prepare the audio codec, which clocks the whole system
andrewm@5 204 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 205 cout << "Unable to open codec I2C\n";
andrewm@0 206 return 1;
andrewm@0 207 }
andrewm@0 208 if(gAudioCodec->initCodec()) {
andrewm@0 209 cout << "Error: unable to initialise audio codec\n";
andrewm@0 210 return 1;
andrewm@0 211 }
andrewm@0 212
andrewm@5 213 // Set default volume levels
andrewm@5 214 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 215 BeagleRT_setADCLevel(settings->adcLevel);
andrewm@5 216 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 217
andrewm@45 218 // Call the user-defined initialisation function
andrewm@45 219 if(!initialise_render(&gContext, userData)) {
andrewm@0 220 cout << "Couldn't initialise audio rendering\n";
andrewm@0 221 return 1;
andrewm@0 222 }
andrewm@0 223
andrewm@0 224 return 0;
andrewm@0 225 }
andrewm@0 226
andrewm@0 227 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 228 // and then transfers control to the PRU object. The PRU object in
andrewm@0 229 // turn will call the audio render() callback function every time
andrewm@0 230 // there is new data to process.
andrewm@0 231
andrewm@0 232 void audioLoop(void *)
andrewm@0 233 {
andrewm@0 234 if(gRTAudioVerbose==1)
andrewm@0 235 rt_printf("_________________Audio Thread!\n");
andrewm@0 236
andrewm@0 237 // PRU audio
andrewm@0 238 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 239
andrewm@0 240 if(gAudioCodec->startAudio(0)) {
andrewm@0 241 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 242 gShouldStop = 1;
andrewm@0 243 }
andrewm@0 244 else {
giuliomoro@16 245 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 246 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 247 gShouldStop = 1;
andrewm@0 248 }
andrewm@0 249 else {
andrewm@0 250 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 251
andrewm@5 252 if(!gAmplifierShouldBeginMuted) {
andrewm@5 253 // First unmute the amplifier
andrewm@5 254 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 255 if(gRTAudioVerbose)
andrewm@5 256 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 257 }
andrewm@0 258 }
andrewm@0 259
andrewm@45 260 gPRU->loop(&gRTAudioInterrupt, gUserData);
andrewm@0 261
andrewm@0 262 // Now clean up
andrewm@0 263 // gPRU->waitForFinish();
andrewm@0 264 gPRU->disable();
andrewm@0 265 gAudioCodec->stopAudio();
andrewm@0 266 gPRU->cleanupGPIO();
andrewm@0 267 }
andrewm@0 268 }
andrewm@0 269
andrewm@0 270 if(gRTAudioVerbose == 1)
andrewm@0 271 rt_printf("audio thread ended\n");
andrewm@0 272 }
andrewm@0 273
andrewm@0 274 // Create a calculation loop which can run independently of the audio, at a different
andrewm@45 275 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
andrewm@45 276 // priority should be generally be less than this.
andrewm@0 277 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@47 278 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 279 {
andrewm@0 280 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 281
andrewm@0 282 // Attempt to create the task
andrewm@0 283 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 284 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 285 free(newTask);
andrewm@0 286 return 0;
andrewm@0 287 }
andrewm@0 288
andrewm@0 289 // Populate the rest of the data structure and store it in the vector
andrewm@0 290 newTask->function = functionToCall;
andrewm@0 291 newTask->name = strdup(name);
andrewm@0 292 newTask->priority = priority;
andrewm@0 293
andrewm@0 294 gAuxTasks.push_back(newTask);
andrewm@0 295
andrewm@0 296 return (AuxiliaryTask)newTask;
andrewm@0 297 }
andrewm@0 298
andrewm@0 299 // Schedule a previously created auxiliary task. It will run when the priority rules next
andrewm@0 300 // allow it to be scheduled.
andrewm@47 301 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 302 {
andrewm@0 303 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
andrewm@0 304
andrewm@0 305 rt_task_resume(&taskToSchedule->task);
andrewm@0 306 }
andrewm@0 307
andrewm@0 308 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 309 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 310 // Treat the argument as containing the task structure
andrewm@0 311 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 312 {
andrewm@0 313 // Get function to call from the argument
andrewm@0 314 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 315 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 316
andrewm@0 317 // Wait for a notification
andrewm@0 318 rt_task_suspend(NULL);
andrewm@0 319
andrewm@0 320 while(!gShouldStop) {
andrewm@0 321 // Then run the calculations
andrewm@0 322 auxiliary_function();
andrewm@0 323
andrewm@0 324 // Wait for a notification
andrewm@0 325 rt_task_suspend(NULL);
andrewm@0 326 }
andrewm@0 327
andrewm@0 328 if(gRTAudioVerbose == 1)
andrewm@0 329 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 330 }
andrewm@0 331
andrewm@0 332 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 333 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 334 // on success.
andrewm@0 335
andrewm@5 336 int BeagleRT_startAudio()
andrewm@0 337 {
andrewm@45 338 // Create audio thread with high Xenomai priority
andrewm@45 339 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
andrewm@0 340 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 341 return -1;
andrewm@0 342 }
andrewm@0 343
andrewm@45 344 // Create an interrupt which the audio thread receives from the PRU
andrewm@45 345 int result = 0;
andrewm@45 346 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
andrewm@45 347 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
andrewm@45 348 return -1;
andrewm@45 349 }
andrewm@45 350
andrewm@0 351 // Start all RT threads
andrewm@0 352 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 353 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 354 return -1;
andrewm@0 355 }
andrewm@0 356
andrewm@0 357 // The user may have created other tasks. Start those also.
andrewm@0 358 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 359 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 360 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 361
andrewm@0 362 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
andrewm@0 363 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
andrewm@0 364 return -1;
andrewm@0 365 }
andrewm@0 366 }
andrewm@0 367
andrewm@0 368 return 0;
andrewm@0 369 }
andrewm@0 370
andrewm@0 371 // Stop the PRU-based audio from running and wait
andrewm@0 372 // for the tasks to complete before returning.
andrewm@0 373
andrewm@5 374 void BeagleRT_stopAudio()
andrewm@0 375 {
andrewm@0 376 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 377 gShouldStop = true;
andrewm@0 378
andrewm@5 379 if(gRTAudioVerbose)
andrewm@5 380 cout << "Stopping audio...\n";
andrewm@5 381
andrewm@0 382 // Now wait for threads to respond and actually stop...
andrewm@0 383 rt_task_join(&gRTAudioThread);
andrewm@0 384
andrewm@0 385 // Stop all the auxiliary threads too
andrewm@0 386 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 387 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 388 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 389
andrewm@0 390 // Wake up each thread and join it
andrewm@0 391 rt_task_resume(&(taskStruct->task));
andrewm@0 392 rt_task_join(&(taskStruct->task));
andrewm@0 393 }
andrewm@0 394 }
andrewm@0 395
andrewm@0 396 // Free any resources associated with PRU real-time audio
andrewm@5 397 void BeagleRT_cleanupAudio()
andrewm@0 398 {
andrewm@45 399 cleanup_render(&gContext, gUserData);
andrewm@0 400
andrewm@0 401 // Clean up the auxiliary tasks
andrewm@0 402 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 403 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 404 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 405
andrewm@45 406 // Delete the task
andrewm@45 407 rt_task_delete(&taskStruct->task);
andrewm@45 408
andrewm@0 409 // Free the name string and the struct itself
andrewm@0 410 free(taskStruct->name);
andrewm@0 411 free(taskStruct);
andrewm@0 412 }
andrewm@0 413 gAuxTasks.clear();
andrewm@0 414
andrewm@45 415 // Delete the audio task and its interrupt
andrewm@45 416 rt_intr_delete(&gRTAudioInterrupt);
andrewm@45 417 rt_task_delete(&gRTAudioThread);
andrewm@45 418
andrewm@0 419 if(gPRU != 0)
andrewm@0 420 delete gPRU;
andrewm@0 421 if(gAudioCodec != 0)
andrewm@0 422 delete gAudioCodec;
andrewm@0 423
andrewm@0 424 if(gAmplifierMutePin >= 0)
andrewm@0 425 gpio_unexport(gAmplifierMutePin);
andrewm@0 426 gAmplifierMutePin = -1;
andrewm@0 427 }
andrewm@0 428
andrewm@5 429 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 430 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 431 int BeagleRT_setDACLevel(float decibels)
andrewm@5 432 {
andrewm@5 433 if(gAudioCodec == 0)
andrewm@5 434 return -1;
andrewm@5 435 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 436 }
andrewm@5 437
andrewm@5 438 // Set the level of the ADC
andrewm@5 439 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 440 int BeagleRT_setADCLevel(float decibels)
andrewm@5 441 {
andrewm@5 442 if(gAudioCodec == 0)
andrewm@5 443 return -1;
andrewm@5 444 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 445 }
andrewm@5 446
andrewm@5 447 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 448 // output only (not line out or speaker)
andrewm@5 449 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 450 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 451 {
andrewm@5 452 if(gAudioCodec == 0)
andrewm@5 453 return -1;
andrewm@5 454 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 455 }
andrewm@5 456
andrewm@5 457 // Mute or unmute the onboard speaker amplifiers
andrewm@5 458 // mute == 0 means unmute; otherwise mute
andrewm@5 459 // Returns 0 on success
andrewm@5 460 int BeagleRT_muteSpeakers(int mute)
andrewm@5 461 {
andrewm@5 462 int pinValue = mute ? LOW : HIGH;
andrewm@5 463
andrewm@5 464 // Check that we have an enabled pin for controlling the mute
andrewm@5 465 if(gAmplifierMutePin < 0)
andrewm@5 466 return -1;
andrewm@5 467
andrewm@5 468 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 469 }
andrewm@5 470
andrewm@0 471 // Set the verbosity level
andrewm@45 472 void BeagleRT_setVerboseLevel(int level)
andrewm@0 473 {
andrewm@0 474 gRTAudioVerbose = level;
andrewm@0 475 }