annotate core/RTAudio.cpp @ 24:ad5cd8dd99b3 bbb_network

UDP communication in place, pre-alpha
author Giulio Moro <giuliomoro@yahoo.it>
date Fri, 08 May 2015 11:12:13 +0100
parents c98863e63174
children 4255ecbb9bec 579c86316008
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@0 27 #include <rtdk.h>
andrewm@0 28
andrewm@0 29 #include "../include/RTAudio.h"
andrewm@0 30 #include "../include/PRU.h"
andrewm@0 31 #include "../include/I2c_Codec.h"
andrewm@0 32 #include "../include/render.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
giuliomoro@24 34 #include "../include/client.h"
andrewm@0 35
andrewm@0 36 using namespace std;
andrewm@0 37
andrewm@0 38 // Data structure to keep track of auxiliary tasks we
andrewm@0 39 // can schedule
andrewm@0 40 typedef struct {
andrewm@0 41 RT_TASK task;
andrewm@0 42 void (*function)(void);
andrewm@0 43 char *name;
andrewm@0 44 int priority;
andrewm@0 45 } InternalAuxiliaryTask;
andrewm@0 46
andrewm@0 47 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@0 48
andrewm@0 49 // Real-time tasks and objects
andrewm@0 50 RT_TASK gRTAudioThread;
andrewm@0 51 PRU *gPRU = 0;
andrewm@0 52 I2c_Codec *gAudioCodec = 0;
andrewm@0 53
andrewm@0 54 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 55
andrewm@0 56 // Flag which tells the audio task to stop
andrewm@0 57 bool gShouldStop = false;
andrewm@0 58
andrewm@0 59 // general settings
giuliomoro@16 60 char *gPRUFilename;//[256] = "pru_rtaudio.bin"; // path to PRU binary file
andrewm@0 61 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 62 int gAmplifierMutePin = -1;
andrewm@5 63 int gAmplifierShouldBeginMuted = 0;
andrewm@0 64
giuliomoro@19 65 // Number of audio and analog channels, globally accessible
giuliomoro@19 66 // At least gNumAnalogChannels and gNumDigitalChannels need to be global to be used
giuliomoro@19 67 // by the AnalogRead() and AnalogWrite() and the digital macros without creating
andrewm@13 68 // extra confusion in their use cases by passing this argument
andrewm@13 69 int gNumAudioChannels = 0;
giuliomoro@19 70 int gNumAnalogChannels = 0;
giuliomoro@19 71 int gNumDigitalChannels = 0;
andrewm@0 72
andrewm@0 73 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 74 // audio, but does not actually start the calculations.
andrewm@0 75 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 76 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 77 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 78 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 79 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@0 80 // userData is an opaque pointer which will be passed through to the initialise_render()
andrewm@0 81 // function for application-specific use
andrewm@0 82 //
andrewm@0 83 // Returns 0 on success.
andrewm@0 84
giuliomoro@24 85
andrewm@5 86 int BeagleRT_initAudio(RTAudioSettings *settings, void *userData)
andrewm@0 87 {
andrewm@0 88 rt_print_auto_init(1);
andrewm@5 89 setVerboseLevel(settings->verbose);
giuliomoro@16 90 gPRUFilename=settings->pruFilename;
andrewm@0 91 if(gRTAudioVerbose == 1)
andrewm@0 92 rt_printf("Running with Xenomai\n");
andrewm@0 93
andrewm@5 94 if(gRTAudioVerbose) {
andrewm@5 95 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 96 if(settings->useAnalog)
giuliomoro@19 97 cout << "analog enabled\n";
andrewm@5 98 else
giuliomoro@19 99 cout << "analog disabled\n";
andrewm@5 100 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 101 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 102 if(settings->beginMuted)
andrewm@5 103 cout << "Beginning with speaker muted\n";
andrewm@5 104 }
andrewm@0 105
andrewm@0 106 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 107 if(settings->ampMutePin >= 0) {
andrewm@5 108 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 109 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 110
andrewm@5 111 if(gpio_export(settings->ampMutePin)) {
andrewm@0 112 if(gRTAudioVerbose)
giuliomoro@16 113 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 114 }
andrewm@5 115 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 116 if(gRTAudioVerbose)
andrewm@0 117 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 118 return -1;
andrewm@0 119 }
andrewm@5 120 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 121 if(gRTAudioVerbose)
andrewm@0 122 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 123 return -1;
andrewm@0 124 }
andrewm@0 125 }
andrewm@0 126
giuliomoro@19 127 // Limit the analog channels to sane values
giuliomoro@19 128 if(settings->numAnalogChannels >= 8)
giuliomoro@19 129 settings->numAnalogChannels = 8;
giuliomoro@19 130 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 131 settings->numAnalogChannels = 4;
andrewm@12 132 else
giuliomoro@19 133 settings->numAnalogChannels = 2;
andrewm@12 134
andrewm@12 135 // Sanity check the combination of channels and period size
giuliomoro@19 136 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
giuliomoro@19 137 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 138 return 1;
andrewm@12 139 }
giuliomoro@19 140 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
giuliomoro@19 141 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 142 return 1;
andrewm@12 143 }
andrewm@12 144
andrewm@0 145 // Use PRU for audio
andrewm@0 146 gPRU = new PRU();
andrewm@0 147 gAudioCodec = new I2c_Codec();
andrewm@0 148
giuliomoro@19 149 gNumDigitalChannels = settings->useDigital ? settings->numDigitalChannels : 0; //this is called here to make sure prepareGPIO initializes the appropriate GPIO pins
giuliomoro@19 150 if(gPRU->prepareGPIO(settings->useAnalog, settings->useDigital, 1, 1)) {
andrewm@0 151 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 152 return 1;
andrewm@0 153 }
giuliomoro@19 154 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
andrewm@0 155 cout << "Error: unable to initialise PRU\n";
andrewm@0 156 return 1;
andrewm@0 157 }
andrewm@5 158 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 159 cout << "Unable to open codec I2C\n";
andrewm@0 160 return 1;
andrewm@0 161 }
andrewm@0 162 if(gAudioCodec->initCodec()) {
andrewm@0 163 cout << "Error: unable to initialise audio codec\n";
andrewm@0 164 return 1;
andrewm@0 165 }
andrewm@0 166
andrewm@5 167 // Set default volume levels
andrewm@5 168 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 169 BeagleRT_setADCLevel(settings->adcLevel);
andrewm@5 170 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 171
giuliomoro@19 172 // Initialise the rendering environment: pass the number of audio and analog
giuliomoro@19 173 // channels, the period size for analog and audio, and the sample rates
andrewm@12 174
andrewm@12 175 int audioPeriodSize = settings->periodSize * 2;
andrewm@12 176 float audioSampleRate = 44100.0;
giuliomoro@19 177 float analogSampleRate = 22050.0;
giuliomoro@19 178 if(settings->useAnalog) {
giuliomoro@19 179 audioPeriodSize = settings->periodSize * settings->numAnalogChannels / 4;
giuliomoro@19 180 analogSampleRate = audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@12 181 }
andrewm@12 182
andrewm@13 183 gNumAudioChannels = 2;
giuliomoro@19 184 gNumAnalogChannels = settings->useAnalog ? settings->numAnalogChannels : 0;
giuliomoro@19 185 if(!initialise_render(gNumAnalogChannels, gNumDigitalChannels, gNumAudioChannels,
giuliomoro@19 186 settings->useAnalog ? settings->periodSize : 0, /* analog period size */
andrewm@12 187 audioPeriodSize,
giuliomoro@19 188 analogSampleRate, audioSampleRate,
giuliomoro@24 189 userData, settings)) {
andrewm@0 190 cout << "Couldn't initialise audio rendering\n";
andrewm@0 191 return 1;
andrewm@0 192 }
andrewm@0 193
andrewm@0 194 return 0;
andrewm@0 195 }
andrewm@0 196
andrewm@0 197 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 198 // and then transfers control to the PRU object. The PRU object in
andrewm@0 199 // turn will call the audio render() callback function every time
andrewm@0 200 // there is new data to process.
andrewm@0 201
andrewm@0 202 void audioLoop(void *)
andrewm@0 203 {
andrewm@0 204 if(gRTAudioVerbose==1)
andrewm@0 205 rt_printf("_________________Audio Thread!\n");
andrewm@0 206
andrewm@0 207 // PRU audio
andrewm@0 208 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 209
andrewm@0 210 if(gAudioCodec->startAudio(0)) {
andrewm@0 211 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 212 gShouldStop = 1;
andrewm@0 213 }
andrewm@0 214 else {
giuliomoro@16 215 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 216 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 217 gShouldStop = 1;
andrewm@0 218 }
andrewm@0 219 else {
andrewm@0 220 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 221
andrewm@5 222 if(!gAmplifierShouldBeginMuted) {
andrewm@5 223 // First unmute the amplifier
andrewm@5 224 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 225 if(gRTAudioVerbose)
andrewm@5 226 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 227 }
andrewm@0 228 }
andrewm@0 229
andrewm@0 230 gPRU->loop();
andrewm@0 231
andrewm@0 232 // Now clean up
andrewm@0 233 // gPRU->waitForFinish();
andrewm@0 234 gPRU->disable();
andrewm@0 235 gAudioCodec->stopAudio();
andrewm@0 236 gPRU->cleanupGPIO();
andrewm@0 237 }
andrewm@0 238 }
andrewm@0 239
andrewm@0 240 if(gRTAudioVerbose == 1)
andrewm@0 241 rt_printf("audio thread ended\n");
andrewm@0 242 }
andrewm@0 243
andrewm@0 244 // Create a calculation loop which can run independently of the audio, at a different
andrewm@0 245 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
andrewm@0 246 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@0 247 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 248 {
andrewm@0 249 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 250
andrewm@0 251 // Attempt to create the task
andrewm@0 252 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 253 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 254 free(newTask);
andrewm@0 255 return 0;
andrewm@0 256 }
andrewm@0 257
andrewm@0 258 // Populate the rest of the data structure and store it in the vector
andrewm@0 259 newTask->function = functionToCall;
andrewm@0 260 newTask->name = strdup(name);
andrewm@0 261 newTask->priority = priority;
andrewm@0 262
andrewm@0 263 gAuxTasks.push_back(newTask);
andrewm@0 264
andrewm@0 265 return (AuxiliaryTask)newTask;
andrewm@0 266 }
andrewm@0 267
andrewm@0 268 // Schedule a previously created auxiliary task. It will run when the priority rules next
andrewm@0 269 // allow it to be scheduled.
andrewm@0 270 void scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 271 {
andrewm@0 272 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
andrewm@0 273
andrewm@0 274 rt_task_resume(&taskToSchedule->task);
andrewm@0 275 }
andrewm@0 276
andrewm@0 277 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 278 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 279 // Treat the argument as containing the task structure
andrewm@0 280 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 281 {
andrewm@0 282 // Get function to call from the argument
andrewm@0 283 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 284 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 285
andrewm@0 286 // Wait for a notification
andrewm@0 287 rt_task_suspend(NULL);
andrewm@0 288
andrewm@0 289 while(!gShouldStop) {
andrewm@0 290 // Then run the calculations
andrewm@0 291 auxiliary_function();
andrewm@0 292
andrewm@0 293 // Wait for a notification
andrewm@0 294 rt_task_suspend(NULL);
andrewm@0 295 }
andrewm@0 296
andrewm@0 297 if(gRTAudioVerbose == 1)
andrewm@0 298 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 299 }
andrewm@0 300
andrewm@0 301 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 302 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 303 // on success.
andrewm@0 304
andrewm@5 305 int BeagleRT_startAudio()
andrewm@0 306 {
andrewm@0 307 // Create audio thread with the highest priority
andrewm@0 308 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
andrewm@0 309 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 310 return -1;
andrewm@0 311 }
andrewm@0 312
andrewm@0 313 // Start all RT threads
andrewm@0 314 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 315 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 316 return -1;
andrewm@0 317 }
andrewm@0 318
andrewm@0 319 // The user may have created other tasks. Start those also.
andrewm@0 320 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 321 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 322 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 323
andrewm@0 324 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
andrewm@0 325 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
andrewm@0 326 return -1;
andrewm@0 327 }
andrewm@0 328 }
andrewm@0 329
andrewm@0 330 return 0;
andrewm@0 331 }
andrewm@0 332
andrewm@0 333 // Stop the PRU-based audio from running and wait
andrewm@0 334 // for the tasks to complete before returning.
andrewm@0 335
andrewm@5 336 void BeagleRT_stopAudio()
andrewm@0 337 {
andrewm@0 338 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 339 gShouldStop = true;
andrewm@0 340
andrewm@5 341 if(gRTAudioVerbose)
andrewm@5 342 cout << "Stopping audio...\n";
andrewm@5 343
andrewm@0 344 // Now wait for threads to respond and actually stop...
andrewm@0 345 rt_task_join(&gRTAudioThread);
andrewm@0 346
andrewm@0 347 // Stop all the auxiliary threads too
andrewm@0 348 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 349 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 350 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 351
andrewm@0 352 // Wake up each thread and join it
andrewm@0 353 rt_task_resume(&(taskStruct->task));
andrewm@0 354 rt_task_join(&(taskStruct->task));
andrewm@0 355 }
andrewm@0 356 }
andrewm@0 357
andrewm@0 358 // Free any resources associated with PRU real-time audio
andrewm@5 359 void BeagleRT_cleanupAudio()
andrewm@0 360 {
andrewm@0 361 cleanup_render();
andrewm@0 362
andrewm@0 363 // Clean up the auxiliary tasks
andrewm@0 364 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 365 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 366 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 367
andrewm@0 368 // Free the name string and the struct itself
andrewm@0 369 free(taskStruct->name);
andrewm@0 370 free(taskStruct);
andrewm@0 371 }
andrewm@0 372 gAuxTasks.clear();
andrewm@0 373
andrewm@0 374 if(gPRU != 0)
andrewm@0 375 delete gPRU;
andrewm@0 376 if(gAudioCodec != 0)
andrewm@0 377 delete gAudioCodec;
andrewm@0 378
andrewm@0 379 if(gAmplifierMutePin >= 0)
andrewm@0 380 gpio_unexport(gAmplifierMutePin);
andrewm@0 381 gAmplifierMutePin = -1;
andrewm@0 382 }
andrewm@0 383
andrewm@5 384 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 385 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 386 int BeagleRT_setDACLevel(float decibels)
andrewm@5 387 {
andrewm@5 388 if(gAudioCodec == 0)
andrewm@5 389 return -1;
andrewm@5 390 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 391 }
andrewm@5 392
andrewm@5 393 // Set the level of the ADC
andrewm@5 394 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 395 int BeagleRT_setADCLevel(float decibels)
andrewm@5 396 {
andrewm@5 397 if(gAudioCodec == 0)
andrewm@5 398 return -1;
andrewm@5 399 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 400 }
andrewm@5 401
andrewm@5 402 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 403 // output only (not line out or speaker)
andrewm@5 404 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 405 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 406 {
andrewm@5 407 if(gAudioCodec == 0)
andrewm@5 408 return -1;
andrewm@5 409 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 410 }
andrewm@5 411
andrewm@5 412 // Mute or unmute the onboard speaker amplifiers
andrewm@5 413 // mute == 0 means unmute; otherwise mute
andrewm@5 414 // Returns 0 on success
andrewm@5 415 int BeagleRT_muteSpeakers(int mute)
andrewm@5 416 {
andrewm@5 417 int pinValue = mute ? LOW : HIGH;
andrewm@5 418
andrewm@5 419 // Check that we have an enabled pin for controlling the mute
andrewm@5 420 if(gAmplifierMutePin < 0)
andrewm@5 421 return -1;
andrewm@5 422
andrewm@5 423 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 424 }
andrewm@5 425
andrewm@0 426 // Set the verbosity level
andrewm@0 427 void setVerboseLevel(int level)
andrewm@0 428 {
andrewm@0 429 gRTAudioVerbose = level;
andrewm@0 430 }