andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@0
|
27 #include <rtdk.h>
|
andrewm@0
|
28
|
andrewm@0
|
29 #include "../include/RTAudio.h"
|
andrewm@0
|
30 #include "../include/PRU.h"
|
andrewm@0
|
31 #include "../include/I2c_Codec.h"
|
andrewm@0
|
32 #include "../include/render.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
giuliomoro@24
|
34 #include "../include/client.h"
|
andrewm@0
|
35
|
andrewm@0
|
36 using namespace std;
|
andrewm@0
|
37
|
andrewm@0
|
38 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
39 // can schedule
|
andrewm@0
|
40 typedef struct {
|
andrewm@0
|
41 RT_TASK task;
|
andrewm@0
|
42 void (*function)(void);
|
andrewm@0
|
43 char *name;
|
andrewm@0
|
44 int priority;
|
andrewm@0
|
45 } InternalAuxiliaryTask;
|
andrewm@0
|
46
|
andrewm@0
|
47 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@0
|
48
|
andrewm@0
|
49 // Real-time tasks and objects
|
andrewm@0
|
50 RT_TASK gRTAudioThread;
|
andrewm@0
|
51 PRU *gPRU = 0;
|
andrewm@0
|
52 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
53
|
andrewm@0
|
54 vector<InternalAuxiliaryTask*> gAuxTasks;
|
andrewm@0
|
55
|
andrewm@0
|
56 // Flag which tells the audio task to stop
|
andrewm@0
|
57 bool gShouldStop = false;
|
andrewm@0
|
58
|
andrewm@0
|
59 // general settings
|
giuliomoro@16
|
60 char *gPRUFilename;//[256] = "pru_rtaudio.bin"; // path to PRU binary file
|
andrewm@0
|
61 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
62 int gAmplifierMutePin = -1;
|
andrewm@5
|
63 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
64
|
giuliomoro@19
|
65 // Number of audio and analog channels, globally accessible
|
giuliomoro@19
|
66 // At least gNumAnalogChannels and gNumDigitalChannels need to be global to be used
|
giuliomoro@19
|
67 // by the AnalogRead() and AnalogWrite() and the digital macros without creating
|
andrewm@13
|
68 // extra confusion in their use cases by passing this argument
|
andrewm@13
|
69 int gNumAudioChannels = 0;
|
giuliomoro@19
|
70 int gNumAnalogChannels = 0;
|
giuliomoro@19
|
71 int gNumDigitalChannels = 0;
|
andrewm@0
|
72
|
andrewm@0
|
73 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
74 // audio, but does not actually start the calculations.
|
andrewm@0
|
75 // periodSize indicates the number of _sensor_ frames per period: the audio period size
|
andrewm@0
|
76 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
|
andrewm@0
|
77 // plus any latency inherent in the ADCs and DACs themselves.
|
giuliomoro@19
|
78 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
|
giuliomoro@19
|
79 // numAnalogChannels indicates how many ADC and DAC channels to use.
|
andrewm@0
|
80 // userData is an opaque pointer which will be passed through to the initialise_render()
|
andrewm@0
|
81 // function for application-specific use
|
andrewm@0
|
82 //
|
andrewm@0
|
83 // Returns 0 on success.
|
andrewm@0
|
84
|
giuliomoro@24
|
85
|
andrewm@5
|
86 int BeagleRT_initAudio(RTAudioSettings *settings, void *userData)
|
andrewm@0
|
87 {
|
andrewm@0
|
88 rt_print_auto_init(1);
|
andrewm@5
|
89 setVerboseLevel(settings->verbose);
|
giuliomoro@16
|
90 gPRUFilename=settings->pruFilename;
|
andrewm@0
|
91 if(gRTAudioVerbose == 1)
|
andrewm@0
|
92 rt_printf("Running with Xenomai\n");
|
andrewm@0
|
93
|
andrewm@5
|
94 if(gRTAudioVerbose) {
|
andrewm@5
|
95 cout << "Starting with period size " << settings->periodSize << "; ";
|
giuliomoro@19
|
96 if(settings->useAnalog)
|
giuliomoro@19
|
97 cout << "analog enabled\n";
|
andrewm@5
|
98 else
|
giuliomoro@19
|
99 cout << "analog disabled\n";
|
andrewm@5
|
100 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
101 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
102 if(settings->beginMuted)
|
andrewm@5
|
103 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
104 }
|
andrewm@0
|
105
|
andrewm@0
|
106 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
107 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
108 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
109 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
110
|
andrewm@5
|
111 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
112 if(gRTAudioVerbose)
|
giuliomoro@16
|
113 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
|
andrewm@0
|
114 }
|
andrewm@5
|
115 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
116 if(gRTAudioVerbose)
|
andrewm@0
|
117 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
118 return -1;
|
andrewm@0
|
119 }
|
andrewm@5
|
120 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
121 if(gRTAudioVerbose)
|
andrewm@0
|
122 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
123 return -1;
|
andrewm@0
|
124 }
|
andrewm@0
|
125 }
|
andrewm@0
|
126
|
giuliomoro@19
|
127 // Limit the analog channels to sane values
|
giuliomoro@19
|
128 if(settings->numAnalogChannels >= 8)
|
giuliomoro@19
|
129 settings->numAnalogChannels = 8;
|
giuliomoro@19
|
130 else if(settings->numAnalogChannels >= 4)
|
giuliomoro@19
|
131 settings->numAnalogChannels = 4;
|
andrewm@12
|
132 else
|
giuliomoro@19
|
133 settings->numAnalogChannels = 2;
|
andrewm@12
|
134
|
andrewm@12
|
135 // Sanity check the combination of channels and period size
|
giuliomoro@19
|
136 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
|
giuliomoro@19
|
137 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
|
andrewm@12
|
138 return 1;
|
andrewm@12
|
139 }
|
giuliomoro@19
|
140 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
|
giuliomoro@19
|
141 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
|
andrewm@12
|
142 return 1;
|
andrewm@12
|
143 }
|
andrewm@12
|
144
|
andrewm@0
|
145 // Use PRU for audio
|
andrewm@0
|
146 gPRU = new PRU();
|
andrewm@0
|
147 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
148
|
giuliomoro@19
|
149 gNumDigitalChannels = settings->useDigital ? settings->numDigitalChannels : 0; //this is called here to make sure prepareGPIO initializes the appropriate GPIO pins
|
giuliomoro@19
|
150 if(gPRU->prepareGPIO(settings->useAnalog, settings->useDigital, 1, 1)) {
|
andrewm@0
|
151 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
152 return 1;
|
andrewm@0
|
153 }
|
giuliomoro@19
|
154 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
|
andrewm@0
|
155 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
156 return 1;
|
andrewm@0
|
157 }
|
andrewm@5
|
158 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
159 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
160 return 1;
|
andrewm@0
|
161 }
|
andrewm@0
|
162 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
163 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
164 return 1;
|
andrewm@0
|
165 }
|
andrewm@0
|
166
|
andrewm@5
|
167 // Set default volume levels
|
andrewm@5
|
168 BeagleRT_setDACLevel(settings->dacLevel);
|
andrewm@5
|
169 BeagleRT_setADCLevel(settings->adcLevel);
|
andrewm@5
|
170 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
171
|
giuliomoro@19
|
172 // Initialise the rendering environment: pass the number of audio and analog
|
giuliomoro@19
|
173 // channels, the period size for analog and audio, and the sample rates
|
andrewm@12
|
174
|
andrewm@12
|
175 int audioPeriodSize = settings->periodSize * 2;
|
andrewm@12
|
176 float audioSampleRate = 44100.0;
|
giuliomoro@19
|
177 float analogSampleRate = 22050.0;
|
giuliomoro@19
|
178 if(settings->useAnalog) {
|
giuliomoro@19
|
179 audioPeriodSize = settings->periodSize * settings->numAnalogChannels / 4;
|
giuliomoro@19
|
180 analogSampleRate = audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
|
andrewm@12
|
181 }
|
andrewm@12
|
182
|
andrewm@13
|
183 gNumAudioChannels = 2;
|
giuliomoro@19
|
184 gNumAnalogChannels = settings->useAnalog ? settings->numAnalogChannels : 0;
|
giuliomoro@19
|
185 if(!initialise_render(gNumAnalogChannels, gNumDigitalChannels, gNumAudioChannels,
|
giuliomoro@19
|
186 settings->useAnalog ? settings->periodSize : 0, /* analog period size */
|
andrewm@12
|
187 audioPeriodSize,
|
giuliomoro@19
|
188 analogSampleRate, audioSampleRate,
|
giuliomoro@24
|
189 userData, settings)) {
|
andrewm@0
|
190 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
191 return 1;
|
andrewm@0
|
192 }
|
andrewm@0
|
193
|
andrewm@0
|
194 return 0;
|
andrewm@0
|
195 }
|
andrewm@0
|
196
|
andrewm@0
|
197 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
198 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
199 // turn will call the audio render() callback function every time
|
andrewm@0
|
200 // there is new data to process.
|
andrewm@0
|
201
|
andrewm@0
|
202 void audioLoop(void *)
|
andrewm@0
|
203 {
|
andrewm@0
|
204 if(gRTAudioVerbose==1)
|
andrewm@0
|
205 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
206
|
andrewm@0
|
207 // PRU audio
|
andrewm@0
|
208 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
209
|
andrewm@0
|
210 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
211 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
212 gShouldStop = 1;
|
andrewm@0
|
213 }
|
andrewm@0
|
214 else {
|
giuliomoro@16
|
215 if(gPRU->start(gPRUFilename)) {
|
giuliomoro@16
|
216 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
217 gShouldStop = 1;
|
andrewm@0
|
218 }
|
andrewm@0
|
219 else {
|
andrewm@0
|
220 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
221
|
andrewm@5
|
222 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
223 // First unmute the amplifier
|
andrewm@5
|
224 if(BeagleRT_muteSpeakers(0)) {
|
andrewm@5
|
225 if(gRTAudioVerbose)
|
andrewm@5
|
226 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
227 }
|
andrewm@0
|
228 }
|
andrewm@0
|
229
|
andrewm@0
|
230 gPRU->loop();
|
andrewm@0
|
231
|
andrewm@0
|
232 // Now clean up
|
andrewm@0
|
233 // gPRU->waitForFinish();
|
andrewm@0
|
234 gPRU->disable();
|
andrewm@0
|
235 gAudioCodec->stopAudio();
|
andrewm@0
|
236 gPRU->cleanupGPIO();
|
andrewm@0
|
237 }
|
andrewm@0
|
238 }
|
andrewm@0
|
239
|
andrewm@0
|
240 if(gRTAudioVerbose == 1)
|
andrewm@0
|
241 rt_printf("audio thread ended\n");
|
andrewm@0
|
242 }
|
andrewm@0
|
243
|
andrewm@0
|
244 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@0
|
245 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
|
andrewm@0
|
246 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
andrewm@0
|
247 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
|
andrewm@0
|
248 {
|
andrewm@0
|
249 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
250
|
andrewm@0
|
251 // Attempt to create the task
|
andrewm@0
|
252 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
253 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
254 free(newTask);
|
andrewm@0
|
255 return 0;
|
andrewm@0
|
256 }
|
andrewm@0
|
257
|
andrewm@0
|
258 // Populate the rest of the data structure and store it in the vector
|
andrewm@0
|
259 newTask->function = functionToCall;
|
andrewm@0
|
260 newTask->name = strdup(name);
|
andrewm@0
|
261 newTask->priority = priority;
|
andrewm@0
|
262
|
andrewm@0
|
263 gAuxTasks.push_back(newTask);
|
andrewm@0
|
264
|
andrewm@0
|
265 return (AuxiliaryTask)newTask;
|
andrewm@0
|
266 }
|
andrewm@0
|
267
|
andrewm@0
|
268 // Schedule a previously created auxiliary task. It will run when the priority rules next
|
andrewm@0
|
269 // allow it to be scheduled.
|
andrewm@0
|
270 void scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
271 {
|
andrewm@0
|
272 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
andrewm@0
|
273
|
andrewm@0
|
274 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
275 }
|
andrewm@0
|
276
|
andrewm@0
|
277 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
278 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
279 // Treat the argument as containing the task structure
|
andrewm@0
|
280 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
281 {
|
andrewm@0
|
282 // Get function to call from the argument
|
andrewm@0
|
283 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
|
andrewm@0
|
284 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
|
andrewm@0
|
285
|
andrewm@0
|
286 // Wait for a notification
|
andrewm@0
|
287 rt_task_suspend(NULL);
|
andrewm@0
|
288
|
andrewm@0
|
289 while(!gShouldStop) {
|
andrewm@0
|
290 // Then run the calculations
|
andrewm@0
|
291 auxiliary_function();
|
andrewm@0
|
292
|
andrewm@0
|
293 // Wait for a notification
|
andrewm@0
|
294 rt_task_suspend(NULL);
|
andrewm@0
|
295 }
|
andrewm@0
|
296
|
andrewm@0
|
297 if(gRTAudioVerbose == 1)
|
andrewm@0
|
298 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
299 }
|
andrewm@0
|
300
|
andrewm@0
|
301 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
302 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
303 // on success.
|
andrewm@0
|
304
|
andrewm@5
|
305 int BeagleRT_startAudio()
|
andrewm@0
|
306 {
|
andrewm@0
|
307 // Create audio thread with the highest priority
|
andrewm@0
|
308 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
309 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
310 return -1;
|
andrewm@0
|
311 }
|
andrewm@0
|
312
|
andrewm@0
|
313 // Start all RT threads
|
andrewm@0
|
314 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
315 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
316 return -1;
|
andrewm@0
|
317 }
|
andrewm@0
|
318
|
andrewm@0
|
319 // The user may have created other tasks. Start those also.
|
andrewm@0
|
320 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
321 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
322 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
323
|
andrewm@0
|
324 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
andrewm@0
|
325 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
andrewm@0
|
326 return -1;
|
andrewm@0
|
327 }
|
andrewm@0
|
328 }
|
andrewm@0
|
329
|
andrewm@0
|
330 return 0;
|
andrewm@0
|
331 }
|
andrewm@0
|
332
|
andrewm@0
|
333 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
334 // for the tasks to complete before returning.
|
andrewm@0
|
335
|
andrewm@5
|
336 void BeagleRT_stopAudio()
|
andrewm@0
|
337 {
|
andrewm@0
|
338 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
339 gShouldStop = true;
|
andrewm@0
|
340
|
andrewm@5
|
341 if(gRTAudioVerbose)
|
andrewm@5
|
342 cout << "Stopping audio...\n";
|
andrewm@5
|
343
|
andrewm@0
|
344 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
345 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
346
|
andrewm@0
|
347 // Stop all the auxiliary threads too
|
andrewm@0
|
348 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
349 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
350 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
351
|
andrewm@0
|
352 // Wake up each thread and join it
|
andrewm@0
|
353 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
354 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
355 }
|
andrewm@0
|
356 }
|
andrewm@0
|
357
|
andrewm@0
|
358 // Free any resources associated with PRU real-time audio
|
andrewm@5
|
359 void BeagleRT_cleanupAudio()
|
andrewm@0
|
360 {
|
andrewm@0
|
361 cleanup_render();
|
andrewm@0
|
362
|
andrewm@0
|
363 // Clean up the auxiliary tasks
|
andrewm@0
|
364 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
365 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
366 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
367
|
andrewm@0
|
368 // Free the name string and the struct itself
|
andrewm@0
|
369 free(taskStruct->name);
|
andrewm@0
|
370 free(taskStruct);
|
andrewm@0
|
371 }
|
andrewm@0
|
372 gAuxTasks.clear();
|
andrewm@0
|
373
|
andrewm@0
|
374 if(gPRU != 0)
|
andrewm@0
|
375 delete gPRU;
|
andrewm@0
|
376 if(gAudioCodec != 0)
|
andrewm@0
|
377 delete gAudioCodec;
|
andrewm@0
|
378
|
andrewm@0
|
379 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
380 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
381 gAmplifierMutePin = -1;
|
andrewm@0
|
382 }
|
andrewm@0
|
383
|
andrewm@5
|
384 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
385 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
386 int BeagleRT_setDACLevel(float decibels)
|
andrewm@5
|
387 {
|
andrewm@5
|
388 if(gAudioCodec == 0)
|
andrewm@5
|
389 return -1;
|
andrewm@5
|
390 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
391 }
|
andrewm@5
|
392
|
andrewm@5
|
393 // Set the level of the ADC
|
andrewm@5
|
394 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
andrewm@5
|
395 int BeagleRT_setADCLevel(float decibels)
|
andrewm@5
|
396 {
|
andrewm@5
|
397 if(gAudioCodec == 0)
|
andrewm@5
|
398 return -1;
|
andrewm@5
|
399 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
400 }
|
andrewm@5
|
401
|
andrewm@5
|
402 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
403 // output only (not line out or speaker)
|
andrewm@5
|
404 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
405 int BeagleRT_setHeadphoneLevel(float decibels)
|
andrewm@5
|
406 {
|
andrewm@5
|
407 if(gAudioCodec == 0)
|
andrewm@5
|
408 return -1;
|
andrewm@5
|
409 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
410 }
|
andrewm@5
|
411
|
andrewm@5
|
412 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
413 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
414 // Returns 0 on success
|
andrewm@5
|
415 int BeagleRT_muteSpeakers(int mute)
|
andrewm@5
|
416 {
|
andrewm@5
|
417 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
418
|
andrewm@5
|
419 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
420 if(gAmplifierMutePin < 0)
|
andrewm@5
|
421 return -1;
|
andrewm@5
|
422
|
andrewm@5
|
423 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
424 }
|
andrewm@5
|
425
|
andrewm@0
|
426 // Set the verbosity level
|
andrewm@0
|
427 void setVerboseLevel(int level)
|
andrewm@0
|
428 {
|
andrewm@0
|
429 gRTAudioVerbose = level;
|
andrewm@0
|
430 }
|