andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@0
|
27 #include <rtdk.h>
|
andrewm@0
|
28
|
andrewm@0
|
29 #include "../include/RTAudio.h"
|
andrewm@0
|
30 #include "../include/PRU.h"
|
andrewm@0
|
31 #include "../include/I2c_Codec.h"
|
andrewm@0
|
32 #include "../include/render.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
andrewm@0
|
34
|
andrewm@0
|
35 using namespace std;
|
andrewm@0
|
36
|
andrewm@0
|
37 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
38 // can schedule
|
andrewm@0
|
39 typedef struct {
|
andrewm@0
|
40 RT_TASK task;
|
andrewm@0
|
41 void (*function)(void);
|
andrewm@0
|
42 char *name;
|
andrewm@0
|
43 int priority;
|
andrewm@0
|
44 } InternalAuxiliaryTask;
|
andrewm@0
|
45
|
andrewm@0
|
46 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@0
|
47 const char gRTCalculationThreadNameMedium[] = "dbox-calculation-medium";
|
andrewm@0
|
48 const char gRTCalculationThreadNameLow[] = "dbox-calculation-low";
|
andrewm@0
|
49
|
andrewm@0
|
50 // Real-time tasks and objects
|
andrewm@0
|
51 RT_TASK gRTAudioThread;
|
andrewm@0
|
52 PRU *gPRU = 0;
|
andrewm@0
|
53 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
54
|
andrewm@0
|
55 vector<InternalAuxiliaryTask*> gAuxTasks;
|
andrewm@0
|
56
|
andrewm@0
|
57 // Flag which tells the audio task to stop
|
andrewm@0
|
58 bool gShouldStop = false;
|
andrewm@0
|
59
|
andrewm@0
|
60 // general settings
|
andrewm@0
|
61 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
62 char gPRUFilename[256] = "pru_rtaudio.bin"; // path to PRU binary file
|
andrewm@0
|
63 int gAmplifierMutePin = -1;
|
andrewm@0
|
64
|
andrewm@0
|
65
|
andrewm@0
|
66 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
67 // audio, but does not actually start the calculations.
|
andrewm@0
|
68 // periodSize indicates the number of _sensor_ frames per period: the audio period size
|
andrewm@0
|
69 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
|
andrewm@0
|
70 // plus any latency inherent in the ADCs and DACs themselves.
|
andrewm@0
|
71 // useMatrix indicates whether to use the ADC and DAC or just the audio codec.
|
andrewm@0
|
72 // userData is an opaque pointer which will be passed through to the initialise_render()
|
andrewm@0
|
73 // function for application-specific use
|
andrewm@0
|
74 //
|
andrewm@0
|
75 // Returns 0 on success.
|
andrewm@0
|
76
|
andrewm@0
|
77 int initAudio(int periodSize, int useMatrix,
|
andrewm@0
|
78 void *userData,
|
andrewm@0
|
79 int codecI2CAddress, int ampMutePin)
|
andrewm@0
|
80 {
|
andrewm@0
|
81 rt_print_auto_init(1);
|
andrewm@0
|
82 if(gRTAudioVerbose == 1)
|
andrewm@0
|
83 rt_printf("Running with Xenomai\n");
|
andrewm@0
|
84
|
andrewm@0
|
85 if(gRTAudioVerbose == 1)
|
andrewm@0
|
86 cout << "---------------->Init Audio Thread" << endl;
|
andrewm@0
|
87
|
andrewm@0
|
88 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@0
|
89 if(ampMutePin >= 0) {
|
andrewm@0
|
90 gAmplifierMutePin = ampMutePin;
|
andrewm@0
|
91
|
andrewm@0
|
92 if(gpio_export(ampMutePin)) {
|
andrewm@0
|
93 if(gRTAudioVerbose)
|
andrewm@0
|
94 cout << "Warning: couldn't export amplifier mute pin\n";
|
andrewm@0
|
95 }
|
andrewm@0
|
96 if(gpio_set_dir(ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
97 if(gRTAudioVerbose)
|
andrewm@0
|
98 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
99 return -1;
|
andrewm@0
|
100 }
|
andrewm@0
|
101 if(gpio_set_value(ampMutePin, LOW)) {
|
andrewm@0
|
102 if(gRTAudioVerbose)
|
andrewm@0
|
103 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
104 return -1;
|
andrewm@0
|
105 }
|
andrewm@0
|
106 }
|
andrewm@0
|
107
|
andrewm@0
|
108 // Use PRU for audio
|
andrewm@0
|
109 gPRU = new PRU();
|
andrewm@0
|
110 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
111
|
andrewm@0
|
112 if(gPRU->prepareGPIO(useMatrix, 1, 1)) {
|
andrewm@0
|
113 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
114 return 1;
|
andrewm@0
|
115 }
|
andrewm@0
|
116 if(gPRU->initialise(0, periodSize, true)) {
|
andrewm@0
|
117 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
118 return 1;
|
andrewm@0
|
119 }
|
andrewm@0
|
120 if(gAudioCodec->initI2C_RW(2, codecI2CAddress, -1)) {
|
andrewm@0
|
121 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
122 return 1;
|
andrewm@0
|
123 }
|
andrewm@0
|
124 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
125 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
126 return 1;
|
andrewm@0
|
127 }
|
andrewm@0
|
128 gAudioCodec->setDACVolume(0); // Set the DAC volume to full-scale
|
andrewm@0
|
129 gAudioCodec->setHPVolume(-12); // Headphones 6dB down
|
andrewm@0
|
130 gAudioCodec->setADCVolume(-12); // Set the ADC volume to 6dB down
|
andrewm@0
|
131
|
andrewm@0
|
132 if(!initialise_render(2, useMatrix ? periodSize : 0, periodSize * 2, 22050.0, 44100.0, userData)) {
|
andrewm@0
|
133 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
134 return 1;
|
andrewm@0
|
135 }
|
andrewm@0
|
136
|
andrewm@0
|
137 return 0;
|
andrewm@0
|
138 }
|
andrewm@0
|
139
|
andrewm@0
|
140 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
141 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
142 // turn will call the audio render() callback function every time
|
andrewm@0
|
143 // there is new data to process.
|
andrewm@0
|
144
|
andrewm@0
|
145 void audioLoop(void *)
|
andrewm@0
|
146 {
|
andrewm@0
|
147 if(gRTAudioVerbose==1)
|
andrewm@0
|
148 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
149
|
andrewm@0
|
150 // PRU audio
|
andrewm@0
|
151 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
152
|
andrewm@0
|
153 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
154 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
155 gShouldStop = 1;
|
andrewm@0
|
156 }
|
andrewm@0
|
157 else {
|
andrewm@0
|
158 if(gPRU->start(gPRUFilename)) {
|
andrewm@0
|
159 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
160 gShouldStop = 1;
|
andrewm@0
|
161 }
|
andrewm@0
|
162 else {
|
andrewm@0
|
163 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@0
|
164 // First unmute the amplifier
|
andrewm@0
|
165 if(gpio_set_value(gAmplifierMutePin, HIGH)) {
|
andrewm@0
|
166 if(gRTAudioVerbose)
|
andrewm@0
|
167 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@0
|
168 }
|
andrewm@0
|
169
|
andrewm@0
|
170 gPRU->loop();
|
andrewm@0
|
171
|
andrewm@0
|
172 // Now clean up
|
andrewm@0
|
173 // gPRU->waitForFinish();
|
andrewm@0
|
174 gPRU->disable();
|
andrewm@0
|
175 gAudioCodec->stopAudio();
|
andrewm@0
|
176 gPRU->cleanupGPIO();
|
andrewm@0
|
177 }
|
andrewm@0
|
178 }
|
andrewm@0
|
179
|
andrewm@0
|
180 if(gRTAudioVerbose == 1)
|
andrewm@0
|
181 rt_printf("audio thread ended\n");
|
andrewm@0
|
182 }
|
andrewm@0
|
183
|
andrewm@0
|
184 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@0
|
185 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
|
andrewm@0
|
186 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
andrewm@0
|
187 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
|
andrewm@0
|
188 {
|
andrewm@0
|
189 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
190
|
andrewm@0
|
191 // Attempt to create the task
|
andrewm@0
|
192 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
193 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
194 free(newTask);
|
andrewm@0
|
195 return 0;
|
andrewm@0
|
196 }
|
andrewm@0
|
197
|
andrewm@0
|
198 // Populate the rest of the data structure and store it in the vector
|
andrewm@0
|
199 newTask->function = functionToCall;
|
andrewm@0
|
200 newTask->name = strdup(name);
|
andrewm@0
|
201 newTask->priority = priority;
|
andrewm@0
|
202
|
andrewm@0
|
203 gAuxTasks.push_back(newTask);
|
andrewm@0
|
204
|
andrewm@0
|
205 return (AuxiliaryTask)newTask;
|
andrewm@0
|
206 }
|
andrewm@0
|
207
|
andrewm@0
|
208 // Schedule a previously created auxiliary task. It will run when the priority rules next
|
andrewm@0
|
209 // allow it to be scheduled.
|
andrewm@0
|
210 void scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
211 {
|
andrewm@0
|
212 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
andrewm@0
|
213
|
andrewm@0
|
214 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
215 }
|
andrewm@0
|
216
|
andrewm@0
|
217 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
218 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
219 // Treat the argument as containing the task structure
|
andrewm@0
|
220 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
221 {
|
andrewm@0
|
222 // Get function to call from the argument
|
andrewm@0
|
223 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
|
andrewm@0
|
224 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
|
andrewm@0
|
225
|
andrewm@0
|
226 // Wait for a notification
|
andrewm@0
|
227 rt_task_suspend(NULL);
|
andrewm@0
|
228
|
andrewm@0
|
229 while(!gShouldStop) {
|
andrewm@0
|
230 // Then run the calculations
|
andrewm@0
|
231 auxiliary_function();
|
andrewm@0
|
232
|
andrewm@0
|
233 // Wait for a notification
|
andrewm@0
|
234 rt_task_suspend(NULL);
|
andrewm@0
|
235 }
|
andrewm@0
|
236
|
andrewm@0
|
237 if(gRTAudioVerbose == 1)
|
andrewm@0
|
238 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
239 }
|
andrewm@0
|
240
|
andrewm@0
|
241 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
242 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
243 // on success.
|
andrewm@0
|
244
|
andrewm@0
|
245 int startAudio()
|
andrewm@0
|
246 {
|
andrewm@0
|
247 // Create audio thread with the highest priority
|
andrewm@0
|
248 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
249 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
250 return -1;
|
andrewm@0
|
251 }
|
andrewm@0
|
252
|
andrewm@0
|
253 // Start all RT threads
|
andrewm@0
|
254 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
255 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
256 return -1;
|
andrewm@0
|
257 }
|
andrewm@0
|
258
|
andrewm@0
|
259 // The user may have created other tasks. Start those also.
|
andrewm@0
|
260 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
261 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
262 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
263
|
andrewm@0
|
264 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
andrewm@0
|
265 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
andrewm@0
|
266 return -1;
|
andrewm@0
|
267 }
|
andrewm@0
|
268 }
|
andrewm@0
|
269
|
andrewm@0
|
270 return 0;
|
andrewm@0
|
271 }
|
andrewm@0
|
272
|
andrewm@0
|
273 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
274 // for the tasks to complete before returning.
|
andrewm@0
|
275
|
andrewm@0
|
276 void stopAudio()
|
andrewm@0
|
277 {
|
andrewm@0
|
278 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
279 gShouldStop = true;
|
andrewm@0
|
280
|
andrewm@0
|
281 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
282 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
283
|
andrewm@0
|
284 // Stop all the auxiliary threads too
|
andrewm@0
|
285 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
286 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
287 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
288
|
andrewm@0
|
289 // Wake up each thread and join it
|
andrewm@0
|
290 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
291 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
292 }
|
andrewm@0
|
293 }
|
andrewm@0
|
294
|
andrewm@0
|
295 // Free any resources associated with PRU real-time audio
|
andrewm@0
|
296 void cleanupAudio()
|
andrewm@0
|
297 {
|
andrewm@0
|
298 cleanup_render();
|
andrewm@0
|
299
|
andrewm@0
|
300 // Clean up the auxiliary tasks
|
andrewm@0
|
301 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
302 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
303 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
304
|
andrewm@0
|
305 // Free the name string and the struct itself
|
andrewm@0
|
306 free(taskStruct->name);
|
andrewm@0
|
307 free(taskStruct);
|
andrewm@0
|
308 }
|
andrewm@0
|
309 gAuxTasks.clear();
|
andrewm@0
|
310
|
andrewm@0
|
311 if(gPRU != 0)
|
andrewm@0
|
312 delete gPRU;
|
andrewm@0
|
313 if(gAudioCodec != 0)
|
andrewm@0
|
314 delete gAudioCodec;
|
andrewm@0
|
315
|
andrewm@0
|
316 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
317 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
318 gAmplifierMutePin = -1;
|
andrewm@0
|
319 }
|
andrewm@0
|
320
|
andrewm@0
|
321 // Set the verbosity level
|
andrewm@0
|
322 void setVerboseLevel(int level)
|
andrewm@0
|
323 {
|
andrewm@0
|
324 gRTAudioVerbose = level;
|
andrewm@0
|
325 }
|