comparison core/RTAudio.cpp @ 0:8a575ba3ab52

Initial commit.
author andrewm
date Fri, 31 Oct 2014 19:10:17 +0100
parents
children 09f03ac40fcc
comparison
equal deleted inserted replaced
-1:000000000000 0:8a575ba3ab52
1 /*
2 * RTAudio.cpp
3 *
4 * Central control code for hard real-time audio on BeagleBone Black
5 * using PRU and Xenomai Linux extensions. This code began as part
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
7 * of London, 2013-14.
8 *
9 * (c) 2014 Victor Zappi and Andrew McPherson
10 * Queen Mary University of London
11 */
12
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <strings.h>
18 #include <math.h>
19 #include <iostream>
20 #include <assert.h>
21 #include <vector>
22
23 // Xenomai-specific includes
24 #include <sys/mman.h>
25 #include <native/task.h>
26 #include <native/timer.h>
27 #include <rtdk.h>
28
29 #include "../include/RTAudio.h"
30 #include "../include/PRU.h"
31 #include "../include/I2c_Codec.h"
32 #include "../include/render.h"
33 #include "../include/GPIOcontrol.h"
34
35 using namespace std;
36
37 // Data structure to keep track of auxiliary tasks we
38 // can schedule
39 typedef struct {
40 RT_TASK task;
41 void (*function)(void);
42 char *name;
43 int priority;
44 } InternalAuxiliaryTask;
45
46 const char gRTAudioThreadName[] = "beaglert-audio";
47 const char gRTCalculationThreadNameMedium[] = "dbox-calculation-medium";
48 const char gRTCalculationThreadNameLow[] = "dbox-calculation-low";
49
50 // Real-time tasks and objects
51 RT_TASK gRTAudioThread;
52 PRU *gPRU = 0;
53 I2c_Codec *gAudioCodec = 0;
54
55 vector<InternalAuxiliaryTask*> gAuxTasks;
56
57 // Flag which tells the audio task to stop
58 bool gShouldStop = false;
59
60 // general settings
61 int gRTAudioVerbose = 0; // Verbosity level for debugging
62 char gPRUFilename[256] = "pru_rtaudio.bin"; // path to PRU binary file
63 int gAmplifierMutePin = -1;
64
65
66 // initAudio() prepares the infrastructure for running PRU-based real-time
67 // audio, but does not actually start the calculations.
68 // periodSize indicates the number of _sensor_ frames per period: the audio period size
69 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
70 // plus any latency inherent in the ADCs and DACs themselves.
71 // useMatrix indicates whether to use the ADC and DAC or just the audio codec.
72 // userData is an opaque pointer which will be passed through to the initialise_render()
73 // function for application-specific use
74 //
75 // Returns 0 on success.
76
77 int initAudio(int periodSize, int useMatrix,
78 void *userData,
79 int codecI2CAddress, int ampMutePin)
80 {
81 rt_print_auto_init(1);
82 if(gRTAudioVerbose == 1)
83 rt_printf("Running with Xenomai\n");
84
85 if(gRTAudioVerbose == 1)
86 cout << "---------------->Init Audio Thread" << endl;
87
88 // Prepare GPIO pins for amplifier mute and status LED
89 if(ampMutePin >= 0) {
90 gAmplifierMutePin = ampMutePin;
91
92 if(gpio_export(ampMutePin)) {
93 if(gRTAudioVerbose)
94 cout << "Warning: couldn't export amplifier mute pin\n";
95 }
96 if(gpio_set_dir(ampMutePin, OUTPUT_PIN)) {
97 if(gRTAudioVerbose)
98 cout << "Couldn't set direction on amplifier mute pin\n";
99 return -1;
100 }
101 if(gpio_set_value(ampMutePin, LOW)) {
102 if(gRTAudioVerbose)
103 cout << "Couldn't set value on amplifier mute pin\n";
104 return -1;
105 }
106 }
107
108 // Use PRU for audio
109 gPRU = new PRU();
110 gAudioCodec = new I2c_Codec();
111
112 if(gPRU->prepareGPIO(useMatrix, 1, 1)) {
113 cout << "Error: unable to prepare GPIO for PRU audio\n";
114 return 1;
115 }
116 if(gPRU->initialise(0, periodSize, true)) {
117 cout << "Error: unable to initialise PRU\n";
118 return 1;
119 }
120 if(gAudioCodec->initI2C_RW(2, codecI2CAddress, -1)) {
121 cout << "Unable to open codec I2C\n";
122 return 1;
123 }
124 if(gAudioCodec->initCodec()) {
125 cout << "Error: unable to initialise audio codec\n";
126 return 1;
127 }
128 gAudioCodec->setDACVolume(0); // Set the DAC volume to full-scale
129 gAudioCodec->setHPVolume(-12); // Headphones 6dB down
130 gAudioCodec->setADCVolume(-12); // Set the ADC volume to 6dB down
131
132 if(!initialise_render(2, useMatrix ? periodSize : 0, periodSize * 2, 22050.0, 44100.0, userData)) {
133 cout << "Couldn't initialise audio rendering\n";
134 return 1;
135 }
136
137 return 0;
138 }
139
140 // audioLoop() is the main function which starts the PRU audio code
141 // and then transfers control to the PRU object. The PRU object in
142 // turn will call the audio render() callback function every time
143 // there is new data to process.
144
145 void audioLoop(void *)
146 {
147 if(gRTAudioVerbose==1)
148 rt_printf("_________________Audio Thread!\n");
149
150 // PRU audio
151 assert(gAudioCodec != 0 && gPRU != 0);
152
153 if(gAudioCodec->startAudio(0)) {
154 rt_printf("Error: unable to start I2C audio codec\n");
155 gShouldStop = 1;
156 }
157 else {
158 if(gPRU->start(gPRUFilename)) {
159 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
160 gShouldStop = 1;
161 }
162 else {
163 // All systems go. Run the loop; it will end when gShouldStop is set to 1
164 // First unmute the amplifier
165 if(gpio_set_value(gAmplifierMutePin, HIGH)) {
166 if(gRTAudioVerbose)
167 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
168 }
169
170 gPRU->loop();
171
172 // Now clean up
173 // gPRU->waitForFinish();
174 gPRU->disable();
175 gAudioCodec->stopAudio();
176 gPRU->cleanupGPIO();
177 }
178 }
179
180 if(gRTAudioVerbose == 1)
181 rt_printf("audio thread ended\n");
182 }
183
184 // Create a calculation loop which can run independently of the audio, at a different
185 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
186 // Returns an (opaque) pointer to the created task on success; 0 on failure
187 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
188 {
189 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
190
191 // Attempt to create the task
192 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
193 cout << "Error: unable to create auxiliary task " << name << endl;
194 free(newTask);
195 return 0;
196 }
197
198 // Populate the rest of the data structure and store it in the vector
199 newTask->function = functionToCall;
200 newTask->name = strdup(name);
201 newTask->priority = priority;
202
203 gAuxTasks.push_back(newTask);
204
205 return (AuxiliaryTask)newTask;
206 }
207
208 // Schedule a previously created auxiliary task. It will run when the priority rules next
209 // allow it to be scheduled.
210 void scheduleAuxiliaryTask(AuxiliaryTask task)
211 {
212 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
213
214 rt_task_resume(&taskToSchedule->task);
215 }
216
217 // Calculation loop that can be used for other tasks running at a lower
218 // priority than the audio thread. Simple wrapper for Xenomai calls.
219 // Treat the argument as containing the task structure
220 void auxiliaryTaskLoop(void *taskStruct)
221 {
222 // Get function to call from the argument
223 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
224 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
225
226 // Wait for a notification
227 rt_task_suspend(NULL);
228
229 while(!gShouldStop) {
230 // Then run the calculations
231 auxiliary_function();
232
233 // Wait for a notification
234 rt_task_suspend(NULL);
235 }
236
237 if(gRTAudioVerbose == 1)
238 rt_printf("auxiliary task %s ended\n", name);
239 }
240
241 // startAudio() should be called only after initAudio() successfully completes.
242 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
243 // on success.
244
245 int startAudio()
246 {
247 // Create audio thread with the highest priority
248 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
249 cout << "Error: unable to create Xenomai audio thread" << endl;
250 return -1;
251 }
252
253 // Start all RT threads
254 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
255 cout << "Error: unable to start Xenomai audio thread" << endl;
256 return -1;
257 }
258
259 // The user may have created other tasks. Start those also.
260 vector<InternalAuxiliaryTask*>::iterator it;
261 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
262 InternalAuxiliaryTask *taskStruct = *it;
263
264 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
265 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
266 return -1;
267 }
268 }
269
270 return 0;
271 }
272
273 // Stop the PRU-based audio from running and wait
274 // for the tasks to complete before returning.
275
276 void stopAudio()
277 {
278 // Tell audio thread to stop (if this hasn't been done already)
279 gShouldStop = true;
280
281 // Now wait for threads to respond and actually stop...
282 rt_task_join(&gRTAudioThread);
283
284 // Stop all the auxiliary threads too
285 vector<InternalAuxiliaryTask*>::iterator it;
286 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
287 InternalAuxiliaryTask *taskStruct = *it;
288
289 // Wake up each thread and join it
290 rt_task_resume(&(taskStruct->task));
291 rt_task_join(&(taskStruct->task));
292 }
293 }
294
295 // Free any resources associated with PRU real-time audio
296 void cleanupAudio()
297 {
298 cleanup_render();
299
300 // Clean up the auxiliary tasks
301 vector<InternalAuxiliaryTask*>::iterator it;
302 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
303 InternalAuxiliaryTask *taskStruct = *it;
304
305 // Free the name string and the struct itself
306 free(taskStruct->name);
307 free(taskStruct);
308 }
309 gAuxTasks.clear();
310
311 if(gPRU != 0)
312 delete gPRU;
313 if(gAudioCodec != 0)
314 delete gAudioCodec;
315
316 if(gAmplifierMutePin >= 0)
317 gpio_unexport(gAmplifierMutePin);
318 gAmplifierMutePin = -1;
319 }
320
321 // Set the verbosity level
322 void setVerboseLevel(int level)
323 {
324 gRTAudioVerbose = level;
325 }