annotate core/RTAudio.cpp @ 19:c98863e63174 matrix_gpio

Renamed matrixGpio to digital and matrix to analog
author Giulio Moro <giuliomoro@yahoo.it>
date Thu, 30 Apr 2015 16:58:41 +0100
parents 670be80463a3
children ad5cd8dd99b3
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@0 27 #include <rtdk.h>
andrewm@0 28
andrewm@0 29 #include "../include/RTAudio.h"
andrewm@0 30 #include "../include/PRU.h"
andrewm@0 31 #include "../include/I2c_Codec.h"
andrewm@0 32 #include "../include/render.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@0 35 using namespace std;
andrewm@0 36
andrewm@0 37 // Data structure to keep track of auxiliary tasks we
andrewm@0 38 // can schedule
andrewm@0 39 typedef struct {
andrewm@0 40 RT_TASK task;
andrewm@0 41 void (*function)(void);
andrewm@0 42 char *name;
andrewm@0 43 int priority;
andrewm@0 44 } InternalAuxiliaryTask;
andrewm@0 45
andrewm@0 46 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@0 47
andrewm@0 48 // Real-time tasks and objects
andrewm@0 49 RT_TASK gRTAudioThread;
andrewm@0 50 PRU *gPRU = 0;
andrewm@0 51 I2c_Codec *gAudioCodec = 0;
andrewm@0 52
andrewm@0 53 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 54
andrewm@0 55 // Flag which tells the audio task to stop
andrewm@0 56 bool gShouldStop = false;
andrewm@0 57
andrewm@0 58 // general settings
giuliomoro@16 59 char *gPRUFilename;//[256] = "pru_rtaudio.bin"; // path to PRU binary file
andrewm@0 60 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 61 int gAmplifierMutePin = -1;
andrewm@5 62 int gAmplifierShouldBeginMuted = 0;
andrewm@0 63
giuliomoro@19 64 // Number of audio and analog channels, globally accessible
giuliomoro@19 65 // At least gNumAnalogChannels and gNumDigitalChannels need to be global to be used
giuliomoro@19 66 // by the AnalogRead() and AnalogWrite() and the digital macros without creating
andrewm@13 67 // extra confusion in their use cases by passing this argument
andrewm@13 68 int gNumAudioChannels = 0;
giuliomoro@19 69 int gNumAnalogChannels = 0;
giuliomoro@19 70 int gNumDigitalChannels = 0;
andrewm@0 71
andrewm@0 72 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 73 // audio, but does not actually start the calculations.
andrewm@0 74 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 75 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 76 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 77 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 78 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@0 79 // userData is an opaque pointer which will be passed through to the initialise_render()
andrewm@0 80 // function for application-specific use
andrewm@0 81 //
andrewm@0 82 // Returns 0 on success.
andrewm@0 83
andrewm@5 84 int BeagleRT_initAudio(RTAudioSettings *settings, void *userData)
andrewm@0 85 {
andrewm@0 86 rt_print_auto_init(1);
andrewm@5 87 setVerboseLevel(settings->verbose);
giuliomoro@16 88 gPRUFilename=settings->pruFilename;
andrewm@0 89 if(gRTAudioVerbose == 1)
andrewm@0 90 rt_printf("Running with Xenomai\n");
andrewm@0 91
andrewm@5 92 if(gRTAudioVerbose) {
andrewm@5 93 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 94 if(settings->useAnalog)
giuliomoro@19 95 cout << "analog enabled\n";
andrewm@5 96 else
giuliomoro@19 97 cout << "analog disabled\n";
andrewm@5 98 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 99 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 100 if(settings->beginMuted)
andrewm@5 101 cout << "Beginning with speaker muted\n";
andrewm@5 102 }
andrewm@0 103
andrewm@0 104 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 105 if(settings->ampMutePin >= 0) {
andrewm@5 106 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 107 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 108
andrewm@5 109 if(gpio_export(settings->ampMutePin)) {
andrewm@0 110 if(gRTAudioVerbose)
giuliomoro@16 111 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 112 }
andrewm@5 113 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 114 if(gRTAudioVerbose)
andrewm@0 115 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 116 return -1;
andrewm@0 117 }
andrewm@5 118 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 119 if(gRTAudioVerbose)
andrewm@0 120 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 121 return -1;
andrewm@0 122 }
andrewm@0 123 }
andrewm@0 124
giuliomoro@19 125 // Limit the analog channels to sane values
giuliomoro@19 126 if(settings->numAnalogChannels >= 8)
giuliomoro@19 127 settings->numAnalogChannels = 8;
giuliomoro@19 128 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 129 settings->numAnalogChannels = 4;
andrewm@12 130 else
giuliomoro@19 131 settings->numAnalogChannels = 2;
andrewm@12 132
andrewm@12 133 // Sanity check the combination of channels and period size
giuliomoro@19 134 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
giuliomoro@19 135 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 136 return 1;
andrewm@12 137 }
giuliomoro@19 138 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
giuliomoro@19 139 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 140 return 1;
andrewm@12 141 }
andrewm@12 142
andrewm@0 143 // Use PRU for audio
andrewm@0 144 gPRU = new PRU();
andrewm@0 145 gAudioCodec = new I2c_Codec();
andrewm@0 146
giuliomoro@19 147 gNumDigitalChannels = settings->useDigital ? settings->numDigitalChannels : 0; //this is called here to make sure prepareGPIO initializes the appropriate GPIO pins
giuliomoro@19 148 if(gPRU->prepareGPIO(settings->useAnalog, settings->useDigital, 1, 1)) {
andrewm@0 149 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 150 return 1;
andrewm@0 151 }
giuliomoro@19 152 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
andrewm@0 153 cout << "Error: unable to initialise PRU\n";
andrewm@0 154 return 1;
andrewm@0 155 }
andrewm@5 156 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 157 cout << "Unable to open codec I2C\n";
andrewm@0 158 return 1;
andrewm@0 159 }
andrewm@0 160 if(gAudioCodec->initCodec()) {
andrewm@0 161 cout << "Error: unable to initialise audio codec\n";
andrewm@0 162 return 1;
andrewm@0 163 }
andrewm@0 164
andrewm@5 165 // Set default volume levels
andrewm@5 166 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 167 BeagleRT_setADCLevel(settings->adcLevel);
andrewm@5 168 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 169
giuliomoro@19 170 // Initialise the rendering environment: pass the number of audio and analog
giuliomoro@19 171 // channels, the period size for analog and audio, and the sample rates
andrewm@12 172
andrewm@12 173 int audioPeriodSize = settings->periodSize * 2;
andrewm@12 174 float audioSampleRate = 44100.0;
giuliomoro@19 175 float analogSampleRate = 22050.0;
giuliomoro@19 176 if(settings->useAnalog) {
giuliomoro@19 177 audioPeriodSize = settings->periodSize * settings->numAnalogChannels / 4;
giuliomoro@19 178 analogSampleRate = audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@12 179 }
andrewm@12 180
andrewm@13 181 gNumAudioChannels = 2;
giuliomoro@19 182 gNumAnalogChannels = settings->useAnalog ? settings->numAnalogChannels : 0;
giuliomoro@19 183 if(!initialise_render(gNumAnalogChannels, gNumDigitalChannels, gNumAudioChannels,
giuliomoro@19 184 settings->useAnalog ? settings->periodSize : 0, /* analog period size */
andrewm@12 185 audioPeriodSize,
giuliomoro@19 186 analogSampleRate, audioSampleRate,
andrewm@12 187 userData)) {
andrewm@0 188 cout << "Couldn't initialise audio rendering\n";
andrewm@0 189 return 1;
andrewm@0 190 }
andrewm@0 191
andrewm@0 192 return 0;
andrewm@0 193 }
andrewm@0 194
andrewm@0 195 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 196 // and then transfers control to the PRU object. The PRU object in
andrewm@0 197 // turn will call the audio render() callback function every time
andrewm@0 198 // there is new data to process.
andrewm@0 199
andrewm@0 200 void audioLoop(void *)
andrewm@0 201 {
andrewm@0 202 if(gRTAudioVerbose==1)
andrewm@0 203 rt_printf("_________________Audio Thread!\n");
andrewm@0 204
andrewm@0 205 // PRU audio
andrewm@0 206 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 207
andrewm@0 208 if(gAudioCodec->startAudio(0)) {
andrewm@0 209 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 210 gShouldStop = 1;
andrewm@0 211 }
andrewm@0 212 else {
giuliomoro@16 213 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 214 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 215 gShouldStop = 1;
andrewm@0 216 }
andrewm@0 217 else {
andrewm@0 218 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 219
andrewm@5 220 if(!gAmplifierShouldBeginMuted) {
andrewm@5 221 // First unmute the amplifier
andrewm@5 222 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 223 if(gRTAudioVerbose)
andrewm@5 224 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 225 }
andrewm@0 226 }
andrewm@0 227
andrewm@0 228 gPRU->loop();
andrewm@0 229
andrewm@0 230 // Now clean up
andrewm@0 231 // gPRU->waitForFinish();
andrewm@0 232 gPRU->disable();
andrewm@0 233 gAudioCodec->stopAudio();
andrewm@0 234 gPRU->cleanupGPIO();
andrewm@0 235 }
andrewm@0 236 }
andrewm@0 237
andrewm@0 238 if(gRTAudioVerbose == 1)
andrewm@0 239 rt_printf("audio thread ended\n");
andrewm@0 240 }
andrewm@0 241
andrewm@0 242 // Create a calculation loop which can run independently of the audio, at a different
andrewm@0 243 // (equal or lower) priority. Audio priority is 99; priority should be generally be less than this.
andrewm@0 244 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@0 245 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 246 {
andrewm@0 247 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 248
andrewm@0 249 // Attempt to create the task
andrewm@0 250 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 251 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 252 free(newTask);
andrewm@0 253 return 0;
andrewm@0 254 }
andrewm@0 255
andrewm@0 256 // Populate the rest of the data structure and store it in the vector
andrewm@0 257 newTask->function = functionToCall;
andrewm@0 258 newTask->name = strdup(name);
andrewm@0 259 newTask->priority = priority;
andrewm@0 260
andrewm@0 261 gAuxTasks.push_back(newTask);
andrewm@0 262
andrewm@0 263 return (AuxiliaryTask)newTask;
andrewm@0 264 }
andrewm@0 265
andrewm@0 266 // Schedule a previously created auxiliary task. It will run when the priority rules next
andrewm@0 267 // allow it to be scheduled.
andrewm@0 268 void scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 269 {
andrewm@0 270 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
andrewm@0 271
andrewm@0 272 rt_task_resume(&taskToSchedule->task);
andrewm@0 273 }
andrewm@0 274
andrewm@0 275 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 276 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 277 // Treat the argument as containing the task structure
andrewm@0 278 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 279 {
andrewm@0 280 // Get function to call from the argument
andrewm@0 281 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 282 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 283
andrewm@0 284 // Wait for a notification
andrewm@0 285 rt_task_suspend(NULL);
andrewm@0 286
andrewm@0 287 while(!gShouldStop) {
andrewm@0 288 // Then run the calculations
andrewm@0 289 auxiliary_function();
andrewm@0 290
andrewm@0 291 // Wait for a notification
andrewm@0 292 rt_task_suspend(NULL);
andrewm@0 293 }
andrewm@0 294
andrewm@0 295 if(gRTAudioVerbose == 1)
andrewm@0 296 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 297 }
andrewm@0 298
andrewm@0 299 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 300 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 301 // on success.
andrewm@0 302
andrewm@5 303 int BeagleRT_startAudio()
andrewm@0 304 {
andrewm@0 305 // Create audio thread with the highest priority
andrewm@0 306 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, 99, T_JOINABLE | T_FPU)) {
andrewm@0 307 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 308 return -1;
andrewm@0 309 }
andrewm@0 310
andrewm@0 311 // Start all RT threads
andrewm@0 312 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 313 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 314 return -1;
andrewm@0 315 }
andrewm@0 316
andrewm@0 317 // The user may have created other tasks. Start those also.
andrewm@0 318 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 319 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 320 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 321
andrewm@0 322 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
andrewm@0 323 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
andrewm@0 324 return -1;
andrewm@0 325 }
andrewm@0 326 }
andrewm@0 327
andrewm@0 328 return 0;
andrewm@0 329 }
andrewm@0 330
andrewm@0 331 // Stop the PRU-based audio from running and wait
andrewm@0 332 // for the tasks to complete before returning.
andrewm@0 333
andrewm@5 334 void BeagleRT_stopAudio()
andrewm@0 335 {
andrewm@0 336 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 337 gShouldStop = true;
andrewm@0 338
andrewm@5 339 if(gRTAudioVerbose)
andrewm@5 340 cout << "Stopping audio...\n";
andrewm@5 341
andrewm@0 342 // Now wait for threads to respond and actually stop...
andrewm@0 343 rt_task_join(&gRTAudioThread);
andrewm@0 344
andrewm@0 345 // Stop all the auxiliary threads too
andrewm@0 346 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 347 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 348 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 349
andrewm@0 350 // Wake up each thread and join it
andrewm@0 351 rt_task_resume(&(taskStruct->task));
andrewm@0 352 rt_task_join(&(taskStruct->task));
andrewm@0 353 }
andrewm@0 354 }
andrewm@0 355
andrewm@0 356 // Free any resources associated with PRU real-time audio
andrewm@5 357 void BeagleRT_cleanupAudio()
andrewm@0 358 {
andrewm@0 359 cleanup_render();
andrewm@0 360
andrewm@0 361 // Clean up the auxiliary tasks
andrewm@0 362 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 363 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 364 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 365
andrewm@0 366 // Free the name string and the struct itself
andrewm@0 367 free(taskStruct->name);
andrewm@0 368 free(taskStruct);
andrewm@0 369 }
andrewm@0 370 gAuxTasks.clear();
andrewm@0 371
andrewm@0 372 if(gPRU != 0)
andrewm@0 373 delete gPRU;
andrewm@0 374 if(gAudioCodec != 0)
andrewm@0 375 delete gAudioCodec;
andrewm@0 376
andrewm@0 377 if(gAmplifierMutePin >= 0)
andrewm@0 378 gpio_unexport(gAmplifierMutePin);
andrewm@0 379 gAmplifierMutePin = -1;
andrewm@0 380 }
andrewm@0 381
andrewm@5 382 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 383 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 384 int BeagleRT_setDACLevel(float decibels)
andrewm@5 385 {
andrewm@5 386 if(gAudioCodec == 0)
andrewm@5 387 return -1;
andrewm@5 388 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 389 }
andrewm@5 390
andrewm@5 391 // Set the level of the ADC
andrewm@5 392 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 393 int BeagleRT_setADCLevel(float decibels)
andrewm@5 394 {
andrewm@5 395 if(gAudioCodec == 0)
andrewm@5 396 return -1;
andrewm@5 397 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 398 }
andrewm@5 399
andrewm@5 400 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 401 // output only (not line out or speaker)
andrewm@5 402 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 403 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 404 {
andrewm@5 405 if(gAudioCodec == 0)
andrewm@5 406 return -1;
andrewm@5 407 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 408 }
andrewm@5 409
andrewm@5 410 // Mute or unmute the onboard speaker amplifiers
andrewm@5 411 // mute == 0 means unmute; otherwise mute
andrewm@5 412 // Returns 0 on success
andrewm@5 413 int BeagleRT_muteSpeakers(int mute)
andrewm@5 414 {
andrewm@5 415 int pinValue = mute ? LOW : HIGH;
andrewm@5 416
andrewm@5 417 // Check that we have an enabled pin for controlling the mute
andrewm@5 418 if(gAmplifierMutePin < 0)
andrewm@5 419 return -1;
andrewm@5 420
andrewm@5 421 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 422 }
andrewm@5 423
andrewm@0 424 // Set the verbosity level
andrewm@0 425 void setVerboseLevel(int level)
andrewm@0 426 {
andrewm@0 427 gRTAudioVerbose = level;
andrewm@0 428 }