andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@45
|
27 #include <native/intr.h>
|
andrewm@0
|
28 #include <rtdk.h>
|
andrewm@0
|
29
|
andrewm@45
|
30 #include "../include/BeagleRT.h"
|
andrewm@0
|
31 #include "../include/PRU.h"
|
andrewm@0
|
32 #include "../include/I2c_Codec.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
giuliomoro@24
|
34 #include "../include/client.h"
|
andrewm@0
|
35
|
andrewm@45
|
36 // ARM interrupt number for PRU event EVTOUT7
|
andrewm@45
|
37 #define PRU_RTAUDIO_IRQ 21
|
andrewm@45
|
38
|
andrewm@0
|
39 using namespace std;
|
andrewm@0
|
40
|
andrewm@0
|
41 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
42 // can schedule
|
andrewm@0
|
43 typedef struct {
|
andrewm@0
|
44 RT_TASK task;
|
andrewm@0
|
45 void (*function)(void);
|
andrewm@0
|
46 char *name;
|
andrewm@0
|
47 int priority;
|
andrewm@0
|
48 } InternalAuxiliaryTask;
|
andrewm@0
|
49
|
andrewm@0
|
50 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@45
|
51 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
|
andrewm@0
|
52
|
andrewm@0
|
53 // Real-time tasks and objects
|
andrewm@0
|
54 RT_TASK gRTAudioThread;
|
andrewm@45
|
55 RT_INTR gRTAudioInterrupt;
|
andrewm@0
|
56 PRU *gPRU = 0;
|
andrewm@0
|
57 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
58
|
andrewm@0
|
59 vector<InternalAuxiliaryTask*> gAuxTasks;
|
andrewm@0
|
60
|
andrewm@0
|
61 // Flag which tells the audio task to stop
|
andrewm@0
|
62 bool gShouldStop = false;
|
andrewm@0
|
63
|
andrewm@0
|
64 // general settings
|
andrewm@45
|
65 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
|
andrewm@0
|
66 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
67 int gAmplifierMutePin = -1;
|
andrewm@5
|
68 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
69
|
andrewm@45
|
70 // Context which holds all the audio/sensor data passed to the render routines
|
andrewm@45
|
71 BeagleRTContext gContext;
|
andrewm@45
|
72
|
andrewm@45
|
73 // User data passed in from main()
|
andrewm@45
|
74 void *gUserData;
|
andrewm@0
|
75
|
andrewm@0
|
76 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
77 // audio, but does not actually start the calculations.
|
andrewm@0
|
78 // periodSize indicates the number of _sensor_ frames per period: the audio period size
|
andrewm@0
|
79 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
|
andrewm@0
|
80 // plus any latency inherent in the ADCs and DACs themselves.
|
giuliomoro@19
|
81 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
|
giuliomoro@19
|
82 // numAnalogChannels indicates how many ADC and DAC channels to use.
|
andrewm@0
|
83 // userData is an opaque pointer which will be passed through to the initialise_render()
|
andrewm@0
|
84 // function for application-specific use
|
andrewm@0
|
85 //
|
andrewm@0
|
86 // Returns 0 on success.
|
andrewm@0
|
87
|
andrewm@45
|
88 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
|
andrewm@0
|
89 {
|
andrewm@0
|
90 rt_print_auto_init(1);
|
andrewm@45
|
91
|
andrewm@45
|
92 BeagleRT_setVerboseLevel(settings->verbose);
|
andrewm@45
|
93 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
|
andrewm@45
|
94 gUserData = userData;
|
andrewm@45
|
95
|
andrewm@45
|
96 // Initialise context data structure
|
andrewm@45
|
97 memset(&gContext, 0, sizeof(BeagleRTContext));
|
andrewm@0
|
98
|
andrewm@5
|
99 if(gRTAudioVerbose) {
|
andrewm@5
|
100 cout << "Starting with period size " << settings->periodSize << "; ";
|
giuliomoro@19
|
101 if(settings->useAnalog)
|
giuliomoro@19
|
102 cout << "analog enabled\n";
|
andrewm@5
|
103 else
|
giuliomoro@19
|
104 cout << "analog disabled\n";
|
andrewm@5
|
105 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
106 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
107 if(settings->beginMuted)
|
andrewm@5
|
108 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
109 }
|
andrewm@0
|
110
|
andrewm@0
|
111 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
112 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
113 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
114 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
115
|
andrewm@5
|
116 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
117 if(gRTAudioVerbose)
|
giuliomoro@16
|
118 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
|
andrewm@0
|
119 }
|
andrewm@5
|
120 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
121 if(gRTAudioVerbose)
|
andrewm@0
|
122 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
123 return -1;
|
andrewm@0
|
124 }
|
andrewm@5
|
125 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
126 if(gRTAudioVerbose)
|
andrewm@0
|
127 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
128 return -1;
|
andrewm@0
|
129 }
|
andrewm@0
|
130 }
|
andrewm@0
|
131
|
giuliomoro@19
|
132 // Limit the analog channels to sane values
|
giuliomoro@19
|
133 if(settings->numAnalogChannels >= 8)
|
giuliomoro@19
|
134 settings->numAnalogChannels = 8;
|
giuliomoro@19
|
135 else if(settings->numAnalogChannels >= 4)
|
giuliomoro@19
|
136 settings->numAnalogChannels = 4;
|
andrewm@12
|
137 else
|
giuliomoro@19
|
138 settings->numAnalogChannels = 2;
|
andrewm@12
|
139
|
andrewm@12
|
140 // Sanity check the combination of channels and period size
|
giuliomoro@19
|
141 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
|
giuliomoro@19
|
142 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
|
andrewm@12
|
143 return 1;
|
andrewm@12
|
144 }
|
giuliomoro@19
|
145 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
|
giuliomoro@19
|
146 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
|
andrewm@12
|
147 return 1;
|
andrewm@12
|
148 }
|
andrewm@12
|
149
|
andrewm@45
|
150 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
|
andrewm@45
|
151 gContext.audioSampleRate = 44100.0;
|
andrewm@45
|
152 gContext.audioChannels = 2;
|
andrewm@45
|
153
|
andrewm@45
|
154 if(settings->useAnalog) {
|
andrewm@45
|
155 gContext.audioFrames = settings->periodSize * settings->numAnalogChannels / 4;
|
andrewm@45
|
156
|
andrewm@45
|
157 gContext.analogFrames = settings->periodSize;
|
andrewm@45
|
158 gContext.analogChannels = settings->numAnalogChannels;
|
andrewm@45
|
159 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
|
andrewm@45
|
160 }
|
andrewm@45
|
161 else {
|
andrewm@45
|
162 gContext.audioFrames = settings->periodSize * 2;
|
andrewm@45
|
163
|
andrewm@45
|
164 gContext.analogFrames = 0;
|
andrewm@45
|
165 gContext.analogChannels = 0;
|
andrewm@45
|
166 gContext.analogSampleRate = 0;
|
andrewm@45
|
167 }
|
andrewm@45
|
168
|
andrewm@45
|
169 // For now, digital frame rate is equal to audio frame rate
|
andrewm@45
|
170 if(settings->useDigital) {
|
andrewm@45
|
171 gContext.digitalFrames = gContext.audioFrames;
|
andrewm@45
|
172 gContext.digitalSampleRate = gContext.audioSampleRate;
|
andrewm@45
|
173 gContext.digitalChannels = settings->numDigitalChannels;
|
andrewm@45
|
174 }
|
andrewm@45
|
175 else {
|
andrewm@45
|
176 gContext.digitalFrames = 0;
|
andrewm@45
|
177 gContext.digitalSampleRate = 0;
|
andrewm@45
|
178 gContext.digitalChannels = 0;
|
andrewm@45
|
179 }
|
andrewm@45
|
180
|
andrewm@45
|
181 // Set flags based on init settings
|
andrewm@45
|
182 if(settings->interleave)
|
andrewm@45
|
183 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
|
andrewm@45
|
184 if(settings->analogOutputsPersist)
|
andrewm@45
|
185 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
|
andrewm@45
|
186
|
andrewm@0
|
187 // Use PRU for audio
|
andrewm@45
|
188 gPRU = new PRU(&gContext);
|
andrewm@0
|
189 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
190
|
andrewm@45
|
191 // Initialise the GPIO pins, including possibly the digital pins in the render routines
|
andrewm@45
|
192 if(gPRU->prepareGPIO(1, 1)) {
|
andrewm@0
|
193 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
194 return 1;
|
andrewm@0
|
195 }
|
andrewm@45
|
196
|
andrewm@45
|
197 // Get the PRU memory buffers ready to go
|
giuliomoro@19
|
198 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
|
andrewm@0
|
199 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
200 return 1;
|
andrewm@0
|
201 }
|
andrewm@45
|
202
|
andrewm@45
|
203 // Prepare the audio codec, which clocks the whole system
|
andrewm@5
|
204 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
205 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
206 return 1;
|
andrewm@0
|
207 }
|
andrewm@0
|
208 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
209 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
210 return 1;
|
andrewm@0
|
211 }
|
andrewm@0
|
212
|
andrewm@5
|
213 // Set default volume levels
|
andrewm@5
|
214 BeagleRT_setDACLevel(settings->dacLevel);
|
andrewm@5
|
215 BeagleRT_setADCLevel(settings->adcLevel);
|
andrewm@5
|
216 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
217
|
andrewm@45
|
218 // Call the user-defined initialisation function
|
andrewm@45
|
219 if(!initialise_render(&gContext, userData)) {
|
andrewm@0
|
220 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
221 return 1;
|
andrewm@0
|
222 }
|
andrewm@0
|
223
|
andrewm@0
|
224 return 0;
|
andrewm@0
|
225 }
|
andrewm@0
|
226
|
andrewm@0
|
227 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
228 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
229 // turn will call the audio render() callback function every time
|
andrewm@0
|
230 // there is new data to process.
|
andrewm@0
|
231
|
andrewm@0
|
232 void audioLoop(void *)
|
andrewm@0
|
233 {
|
andrewm@0
|
234 if(gRTAudioVerbose==1)
|
andrewm@0
|
235 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
236
|
andrewm@0
|
237 // PRU audio
|
andrewm@0
|
238 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
239
|
andrewm@0
|
240 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
241 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
242 gShouldStop = 1;
|
andrewm@0
|
243 }
|
andrewm@0
|
244 else {
|
giuliomoro@16
|
245 if(gPRU->start(gPRUFilename)) {
|
giuliomoro@16
|
246 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
247 gShouldStop = 1;
|
andrewm@0
|
248 }
|
andrewm@0
|
249 else {
|
andrewm@0
|
250 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
251
|
andrewm@5
|
252 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
253 // First unmute the amplifier
|
andrewm@5
|
254 if(BeagleRT_muteSpeakers(0)) {
|
andrewm@5
|
255 if(gRTAudioVerbose)
|
andrewm@5
|
256 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
257 }
|
andrewm@0
|
258 }
|
andrewm@0
|
259
|
andrewm@45
|
260 gPRU->loop(&gRTAudioInterrupt, gUserData);
|
andrewm@0
|
261
|
andrewm@0
|
262 // Now clean up
|
andrewm@0
|
263 // gPRU->waitForFinish();
|
andrewm@0
|
264 gPRU->disable();
|
andrewm@0
|
265 gAudioCodec->stopAudio();
|
andrewm@0
|
266 gPRU->cleanupGPIO();
|
andrewm@0
|
267 }
|
andrewm@0
|
268 }
|
andrewm@0
|
269
|
andrewm@0
|
270 if(gRTAudioVerbose == 1)
|
andrewm@0
|
271 rt_printf("audio thread ended\n");
|
andrewm@0
|
272 }
|
andrewm@0
|
273
|
andrewm@0
|
274 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@45
|
275 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
|
andrewm@45
|
276 // priority should be generally be less than this.
|
andrewm@0
|
277 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
andrewm@0
|
278 AuxiliaryTask createAuxiliaryTaskLoop(void (*functionToCall)(void), int priority, const char *name)
|
andrewm@0
|
279 {
|
andrewm@0
|
280 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
281
|
andrewm@0
|
282 // Attempt to create the task
|
andrewm@0
|
283 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
284 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
285 free(newTask);
|
andrewm@0
|
286 return 0;
|
andrewm@0
|
287 }
|
andrewm@0
|
288
|
andrewm@0
|
289 // Populate the rest of the data structure and store it in the vector
|
andrewm@0
|
290 newTask->function = functionToCall;
|
andrewm@0
|
291 newTask->name = strdup(name);
|
andrewm@0
|
292 newTask->priority = priority;
|
andrewm@0
|
293
|
andrewm@0
|
294 gAuxTasks.push_back(newTask);
|
andrewm@0
|
295
|
andrewm@0
|
296 return (AuxiliaryTask)newTask;
|
andrewm@0
|
297 }
|
andrewm@0
|
298
|
andrewm@0
|
299 // Schedule a previously created auxiliary task. It will run when the priority rules next
|
andrewm@0
|
300 // allow it to be scheduled.
|
andrewm@0
|
301 void scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
302 {
|
andrewm@0
|
303 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
andrewm@0
|
304
|
andrewm@0
|
305 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
306 }
|
andrewm@0
|
307
|
andrewm@0
|
308 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
309 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
310 // Treat the argument as containing the task structure
|
andrewm@0
|
311 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
312 {
|
andrewm@0
|
313 // Get function to call from the argument
|
andrewm@0
|
314 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
|
andrewm@0
|
315 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
|
andrewm@0
|
316
|
andrewm@0
|
317 // Wait for a notification
|
andrewm@0
|
318 rt_task_suspend(NULL);
|
andrewm@0
|
319
|
andrewm@0
|
320 while(!gShouldStop) {
|
andrewm@0
|
321 // Then run the calculations
|
andrewm@0
|
322 auxiliary_function();
|
andrewm@0
|
323
|
andrewm@0
|
324 // Wait for a notification
|
andrewm@0
|
325 rt_task_suspend(NULL);
|
andrewm@0
|
326 }
|
andrewm@0
|
327
|
andrewm@0
|
328 if(gRTAudioVerbose == 1)
|
andrewm@0
|
329 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
330 }
|
andrewm@0
|
331
|
andrewm@0
|
332 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
333 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
334 // on success.
|
andrewm@0
|
335
|
andrewm@5
|
336 int BeagleRT_startAudio()
|
andrewm@0
|
337 {
|
andrewm@45
|
338 // Create audio thread with high Xenomai priority
|
andrewm@45
|
339 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
340 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
341 return -1;
|
andrewm@0
|
342 }
|
andrewm@0
|
343
|
andrewm@45
|
344 // Create an interrupt which the audio thread receives from the PRU
|
andrewm@45
|
345 int result = 0;
|
andrewm@45
|
346 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
|
andrewm@45
|
347 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
|
andrewm@45
|
348 return -1;
|
andrewm@45
|
349 }
|
andrewm@45
|
350
|
andrewm@0
|
351 // Start all RT threads
|
andrewm@0
|
352 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
353 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
354 return -1;
|
andrewm@0
|
355 }
|
andrewm@0
|
356
|
andrewm@0
|
357 // The user may have created other tasks. Start those also.
|
andrewm@0
|
358 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
359 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
360 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
361
|
andrewm@0
|
362 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
andrewm@0
|
363 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
andrewm@0
|
364 return -1;
|
andrewm@0
|
365 }
|
andrewm@0
|
366 }
|
andrewm@0
|
367
|
andrewm@0
|
368 return 0;
|
andrewm@0
|
369 }
|
andrewm@0
|
370
|
andrewm@0
|
371 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
372 // for the tasks to complete before returning.
|
andrewm@0
|
373
|
andrewm@5
|
374 void BeagleRT_stopAudio()
|
andrewm@0
|
375 {
|
andrewm@0
|
376 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
377 gShouldStop = true;
|
andrewm@0
|
378
|
andrewm@5
|
379 if(gRTAudioVerbose)
|
andrewm@5
|
380 cout << "Stopping audio...\n";
|
andrewm@5
|
381
|
andrewm@0
|
382 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
383 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
384
|
andrewm@0
|
385 // Stop all the auxiliary threads too
|
andrewm@0
|
386 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
387 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
388 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
389
|
andrewm@0
|
390 // Wake up each thread and join it
|
andrewm@0
|
391 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
392 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
393 }
|
andrewm@0
|
394 }
|
andrewm@0
|
395
|
andrewm@0
|
396 // Free any resources associated with PRU real-time audio
|
andrewm@5
|
397 void BeagleRT_cleanupAudio()
|
andrewm@0
|
398 {
|
andrewm@45
|
399 cleanup_render(&gContext, gUserData);
|
andrewm@0
|
400
|
andrewm@0
|
401 // Clean up the auxiliary tasks
|
andrewm@0
|
402 vector<InternalAuxiliaryTask*>::iterator it;
|
andrewm@0
|
403 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
|
andrewm@0
|
404 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
405
|
andrewm@45
|
406 // Delete the task
|
andrewm@45
|
407 rt_task_delete(&taskStruct->task);
|
andrewm@45
|
408
|
andrewm@0
|
409 // Free the name string and the struct itself
|
andrewm@0
|
410 free(taskStruct->name);
|
andrewm@0
|
411 free(taskStruct);
|
andrewm@0
|
412 }
|
andrewm@0
|
413 gAuxTasks.clear();
|
andrewm@0
|
414
|
andrewm@45
|
415 // Delete the audio task and its interrupt
|
andrewm@45
|
416 rt_intr_delete(&gRTAudioInterrupt);
|
andrewm@45
|
417 rt_task_delete(&gRTAudioThread);
|
andrewm@45
|
418
|
andrewm@0
|
419 if(gPRU != 0)
|
andrewm@0
|
420 delete gPRU;
|
andrewm@0
|
421 if(gAudioCodec != 0)
|
andrewm@0
|
422 delete gAudioCodec;
|
andrewm@0
|
423
|
andrewm@0
|
424 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
425 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
426 gAmplifierMutePin = -1;
|
andrewm@0
|
427 }
|
andrewm@0
|
428
|
andrewm@5
|
429 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
430 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
431 int BeagleRT_setDACLevel(float decibels)
|
andrewm@5
|
432 {
|
andrewm@5
|
433 if(gAudioCodec == 0)
|
andrewm@5
|
434 return -1;
|
andrewm@5
|
435 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
436 }
|
andrewm@5
|
437
|
andrewm@5
|
438 // Set the level of the ADC
|
andrewm@5
|
439 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
andrewm@5
|
440 int BeagleRT_setADCLevel(float decibels)
|
andrewm@5
|
441 {
|
andrewm@5
|
442 if(gAudioCodec == 0)
|
andrewm@5
|
443 return -1;
|
andrewm@5
|
444 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
445 }
|
andrewm@5
|
446
|
andrewm@5
|
447 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
448 // output only (not line out or speaker)
|
andrewm@5
|
449 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
450 int BeagleRT_setHeadphoneLevel(float decibels)
|
andrewm@5
|
451 {
|
andrewm@5
|
452 if(gAudioCodec == 0)
|
andrewm@5
|
453 return -1;
|
andrewm@5
|
454 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
455 }
|
andrewm@5
|
456
|
andrewm@5
|
457 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
458 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
459 // Returns 0 on success
|
andrewm@5
|
460 int BeagleRT_muteSpeakers(int mute)
|
andrewm@5
|
461 {
|
andrewm@5
|
462 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
463
|
andrewm@5
|
464 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
465 if(gAmplifierMutePin < 0)
|
andrewm@5
|
466 return -1;
|
andrewm@5
|
467
|
andrewm@5
|
468 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
469 }
|
andrewm@5
|
470
|
andrewm@0
|
471 // Set the verbosity level
|
andrewm@45
|
472 void BeagleRT_setVerboseLevel(int level)
|
andrewm@0
|
473 {
|
andrewm@0
|
474 gRTAudioVerbose = level;
|
andrewm@0
|
475 }
|