annotate core/RTAudio.cpp @ 171:e63563507edd

Added command-line options for the PGA
author Giulio Moro <giuliomoro@yahoo.it>
date Mon, 28 Dec 2015 03:53:36 +0100
parents f944d0b60fa8
children 5f4408705eed
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@45 27 #include <native/intr.h>
andrewm@0 28 #include <rtdk.h>
andrewm@0 29
andrewm@45 30 #include "../include/BeagleRT.h"
andrewm@0 31 #include "../include/PRU.h"
andrewm@0 32 #include "../include/I2c_Codec.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
andrewm@0 34
andrewm@45 35 // ARM interrupt number for PRU event EVTOUT7
andrewm@45 36 #define PRU_RTAUDIO_IRQ 21
andrewm@45 37
andrewm@0 38 using namespace std;
andrewm@0 39
andrewm@0 40 // Data structure to keep track of auxiliary tasks we
andrewm@0 41 // can schedule
andrewm@0 42 typedef struct {
andrewm@0 43 RT_TASK task;
andrewm@0 44 void (*function)(void);
andrewm@0 45 char *name;
andrewm@0 46 int priority;
andrewm@0 47 } InternalAuxiliaryTask;
andrewm@0 48
andrewm@0 49 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@45 50 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
andrewm@0 51
andrewm@0 52 // Real-time tasks and objects
andrewm@0 53 RT_TASK gRTAudioThread;
andrewm@50 54 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 55 RT_INTR gRTAudioInterrupt;
andrewm@50 56 #endif
andrewm@0 57 PRU *gPRU = 0;
andrewm@0 58 I2c_Codec *gAudioCodec = 0;
andrewm@0 59
andrewm@0 60 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 61
andrewm@0 62 // Flag which tells the audio task to stop
andrewm@0 63 bool gShouldStop = false;
andrewm@0 64
andrewm@0 65 // general settings
andrewm@45 66 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
andrewm@0 67 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 68 int gAmplifierMutePin = -1;
andrewm@5 69 int gAmplifierShouldBeginMuted = 0;
andrewm@0 70
andrewm@45 71 // Context which holds all the audio/sensor data passed to the render routines
andrewm@45 72 BeagleRTContext gContext;
andrewm@45 73
andrewm@45 74 // User data passed in from main()
andrewm@45 75 void *gUserData;
andrewm@0 76
andrewm@0 77 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 78 // audio, but does not actually start the calculations.
andrewm@0 79 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 80 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 81 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 82 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 83 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@56 84 // userData is an opaque pointer which will be passed through to the setup()
andrewm@0 85 // function for application-specific use
andrewm@0 86 //
andrewm@0 87 // Returns 0 on success.
andrewm@0 88
andrewm@45 89 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
andrewm@0 90 {
andrewm@0 91 rt_print_auto_init(1);
andrewm@45 92
andrewm@45 93 BeagleRT_setVerboseLevel(settings->verbose);
andrewm@45 94 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
andrewm@45 95 gUserData = userData;
andrewm@45 96
andrewm@45 97 // Initialise context data structure
andrewm@45 98 memset(&gContext, 0, sizeof(BeagleRTContext));
andrewm@0 99
andrewm@5 100 if(gRTAudioVerbose) {
andrewm@5 101 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 102 if(settings->useAnalog)
giuliomoro@19 103 cout << "analog enabled\n";
andrewm@5 104 else
giuliomoro@19 105 cout << "analog disabled\n";
andrewm@5 106 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 107 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 108 if(settings->beginMuted)
andrewm@5 109 cout << "Beginning with speaker muted\n";
andrewm@5 110 }
andrewm@0 111
andrewm@0 112 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 113 if(settings->ampMutePin >= 0) {
andrewm@5 114 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 115 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 116
andrewm@5 117 if(gpio_export(settings->ampMutePin)) {
andrewm@0 118 if(gRTAudioVerbose)
giuliomoro@16 119 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 120 }
andrewm@5 121 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 122 if(gRTAudioVerbose)
andrewm@0 123 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 124 return -1;
andrewm@0 125 }
andrewm@5 126 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 127 if(gRTAudioVerbose)
andrewm@0 128 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 129 return -1;
andrewm@0 130 }
andrewm@0 131 }
andrewm@0 132
giuliomoro@19 133 // Limit the analog channels to sane values
giuliomoro@19 134 if(settings->numAnalogChannels >= 8)
giuliomoro@19 135 settings->numAnalogChannels = 8;
giuliomoro@19 136 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 137 settings->numAnalogChannels = 4;
andrewm@12 138 else
giuliomoro@19 139 settings->numAnalogChannels = 2;
andrewm@12 140
andrewm@12 141 // Sanity check the combination of channels and period size
giuliomoro@19 142 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
giuliomoro@19 143 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 144 return 1;
andrewm@12 145 }
giuliomoro@19 146 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
giuliomoro@19 147 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 148 return 1;
andrewm@12 149 }
andrewm@12 150
andrewm@45 151 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
andrewm@45 152 gContext.audioSampleRate = 44100.0;
andrewm@45 153 gContext.audioChannels = 2;
andrewm@45 154
andrewm@45 155 if(settings->useAnalog) {
andrewm@45 156 gContext.audioFrames = settings->periodSize * settings->numAnalogChannels / 4;
andrewm@45 157
andrewm@45 158 gContext.analogFrames = settings->periodSize;
andrewm@45 159 gContext.analogChannels = settings->numAnalogChannels;
andrewm@45 160 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@45 161 }
andrewm@45 162 else {
andrewm@45 163 gContext.audioFrames = settings->periodSize * 2;
andrewm@45 164
andrewm@45 165 gContext.analogFrames = 0;
andrewm@45 166 gContext.analogChannels = 0;
andrewm@45 167 gContext.analogSampleRate = 0;
andrewm@45 168 }
andrewm@45 169
andrewm@45 170 // For now, digital frame rate is equal to audio frame rate
andrewm@45 171 if(settings->useDigital) {
andrewm@45 172 gContext.digitalFrames = gContext.audioFrames;
andrewm@45 173 gContext.digitalSampleRate = gContext.audioSampleRate;
andrewm@45 174 gContext.digitalChannels = settings->numDigitalChannels;
andrewm@45 175 }
andrewm@45 176 else {
andrewm@45 177 gContext.digitalFrames = 0;
andrewm@45 178 gContext.digitalSampleRate = 0;
andrewm@45 179 gContext.digitalChannels = 0;
andrewm@45 180 }
andrewm@45 181
andrewm@45 182 // Set flags based on init settings
andrewm@45 183 if(settings->interleave)
andrewm@45 184 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
andrewm@45 185 if(settings->analogOutputsPersist)
andrewm@45 186 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
andrewm@45 187
andrewm@0 188 // Use PRU for audio
andrewm@45 189 gPRU = new PRU(&gContext);
andrewm@0 190 gAudioCodec = new I2c_Codec();
andrewm@0 191
andrewm@45 192 // Initialise the GPIO pins, including possibly the digital pins in the render routines
andrewm@45 193 if(gPRU->prepareGPIO(1, 1)) {
andrewm@0 194 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 195 return 1;
andrewm@0 196 }
andrewm@45 197
andrewm@45 198 // Get the PRU memory buffers ready to go
giuliomoro@19 199 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
andrewm@0 200 cout << "Error: unable to initialise PRU\n";
andrewm@0 201 return 1;
andrewm@0 202 }
andrewm@45 203
andrewm@45 204 // Prepare the audio codec, which clocks the whole system
andrewm@5 205 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 206 cout << "Unable to open codec I2C\n";
andrewm@0 207 return 1;
andrewm@0 208 }
andrewm@0 209 if(gAudioCodec->initCodec()) {
andrewm@0 210 cout << "Error: unable to initialise audio codec\n";
andrewm@0 211 return 1;
andrewm@0 212 }
giuliomoro@171 213 cout << "Initialized codec\n";
andrewm@5 214 // Set default volume levels
andrewm@5 215 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 216 BeagleRT_setADCLevel(settings->adcLevel);
giuliomoro@171 217 for(int n = 0; n < 2; n++){
giuliomoro@171 218 BeagleRT_setPgaGain(settings->pgaGain[n], n);
giuliomoro@171 219 }
andrewm@5 220 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 221
andrewm@45 222 // Call the user-defined initialisation function
andrewm@56 223 if(!setup(&gContext, userData)) {
andrewm@0 224 cout << "Couldn't initialise audio rendering\n";
andrewm@0 225 return 1;
andrewm@0 226 }
andrewm@0 227
andrewm@0 228 return 0;
andrewm@0 229 }
andrewm@0 230
andrewm@0 231 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 232 // and then transfers control to the PRU object. The PRU object in
andrewm@0 233 // turn will call the audio render() callback function every time
andrewm@0 234 // there is new data to process.
andrewm@0 235
andrewm@0 236 void audioLoop(void *)
andrewm@0 237 {
andrewm@0 238 if(gRTAudioVerbose==1)
andrewm@0 239 rt_printf("_________________Audio Thread!\n");
andrewm@0 240
andrewm@0 241 // PRU audio
andrewm@0 242 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 243
andrewm@0 244 if(gAudioCodec->startAudio(0)) {
andrewm@0 245 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 246 gShouldStop = 1;
andrewm@0 247 }
andrewm@0 248 else {
giuliomoro@16 249 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 250 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 251 gShouldStop = 1;
andrewm@0 252 }
andrewm@0 253 else {
andrewm@0 254 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 255
andrewm@5 256 if(!gAmplifierShouldBeginMuted) {
andrewm@5 257 // First unmute the amplifier
andrewm@5 258 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 259 if(gRTAudioVerbose)
andrewm@5 260 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 261 }
andrewm@0 262 }
andrewm@0 263
andrewm@50 264 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 265 gPRU->loop(&gRTAudioInterrupt, gUserData);
andrewm@50 266 #else
andrewm@50 267 gPRU->loop(0, gUserData);
andrewm@50 268 #endif
andrewm@0 269 // Now clean up
andrewm@0 270 // gPRU->waitForFinish();
andrewm@0 271 gPRU->disable();
andrewm@0 272 gAudioCodec->stopAudio();
andrewm@0 273 gPRU->cleanupGPIO();
andrewm@0 274 }
andrewm@0 275 }
andrewm@0 276
andrewm@0 277 if(gRTAudioVerbose == 1)
andrewm@0 278 rt_printf("audio thread ended\n");
andrewm@0 279 }
andrewm@0 280
andrewm@0 281 // Create a calculation loop which can run independently of the audio, at a different
andrewm@45 282 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
andrewm@45 283 // priority should be generally be less than this.
andrewm@0 284 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@47 285 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 286 {
andrewm@0 287 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 288
andrewm@0 289 // Attempt to create the task
andrewm@0 290 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 291 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 292 free(newTask);
andrewm@0 293 return 0;
andrewm@0 294 }
andrewm@0 295
andrewm@0 296 // Populate the rest of the data structure and store it in the vector
andrewm@0 297 newTask->function = functionToCall;
andrewm@0 298 newTask->name = strdup(name);
andrewm@0 299 newTask->priority = priority;
andrewm@0 300
andrewm@0 301 gAuxTasks.push_back(newTask);
andrewm@0 302
andrewm@0 303 return (AuxiliaryTask)newTask;
andrewm@0 304 }
andrewm@0 305
andrewm@0 306 // Schedule a previously created auxiliary task. It will run when the priority rules next
andrewm@0 307 // allow it to be scheduled.
andrewm@47 308 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 309 {
andrewm@0 310 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
andrewm@0 311
andrewm@0 312 rt_task_resume(&taskToSchedule->task);
andrewm@0 313 }
andrewm@0 314
andrewm@0 315 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 316 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 317 // Treat the argument as containing the task structure
andrewm@0 318 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 319 {
andrewm@0 320 // Get function to call from the argument
andrewm@0 321 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 322 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 323
andrewm@0 324 // Wait for a notification
andrewm@0 325 rt_task_suspend(NULL);
andrewm@0 326
andrewm@0 327 while(!gShouldStop) {
andrewm@0 328 // Then run the calculations
andrewm@0 329 auxiliary_function();
andrewm@0 330
andrewm@0 331 // Wait for a notification
andrewm@0 332 rt_task_suspend(NULL);
andrewm@0 333 }
andrewm@0 334
andrewm@0 335 if(gRTAudioVerbose == 1)
andrewm@0 336 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 337 }
andrewm@0 338
andrewm@0 339 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 340 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 341 // on success.
andrewm@0 342
andrewm@5 343 int BeagleRT_startAudio()
andrewm@0 344 {
andrewm@45 345 // Create audio thread with high Xenomai priority
andrewm@45 346 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
andrewm@0 347 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 348 return -1;
andrewm@0 349 }
andrewm@0 350
andrewm@50 351 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 352 // Create an interrupt which the audio thread receives from the PRU
andrewm@45 353 int result = 0;
andrewm@45 354 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
andrewm@45 355 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
andrewm@45 356 return -1;
andrewm@45 357 }
andrewm@50 358 #endif
andrewm@45 359
andrewm@0 360 // Start all RT threads
andrewm@0 361 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 362 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 363 return -1;
andrewm@0 364 }
andrewm@0 365
andrewm@0 366 // The user may have created other tasks. Start those also.
andrewm@0 367 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 368 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 369 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 370
andrewm@0 371 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
andrewm@0 372 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
andrewm@0 373 return -1;
andrewm@0 374 }
andrewm@0 375 }
andrewm@0 376
andrewm@0 377 return 0;
andrewm@0 378 }
andrewm@0 379
andrewm@0 380 // Stop the PRU-based audio from running and wait
andrewm@0 381 // for the tasks to complete before returning.
andrewm@0 382
andrewm@5 383 void BeagleRT_stopAudio()
andrewm@0 384 {
andrewm@0 385 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 386 gShouldStop = true;
andrewm@0 387
andrewm@5 388 if(gRTAudioVerbose)
andrewm@5 389 cout << "Stopping audio...\n";
andrewm@5 390
andrewm@0 391 // Now wait for threads to respond and actually stop...
andrewm@0 392 rt_task_join(&gRTAudioThread);
andrewm@0 393
andrewm@0 394 // Stop all the auxiliary threads too
andrewm@0 395 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 396 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 397 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 398
andrewm@0 399 // Wake up each thread and join it
andrewm@0 400 rt_task_resume(&(taskStruct->task));
andrewm@0 401 rt_task_join(&(taskStruct->task));
andrewm@0 402 }
andrewm@0 403 }
andrewm@0 404
andrewm@0 405 // Free any resources associated with PRU real-time audio
andrewm@5 406 void BeagleRT_cleanupAudio()
andrewm@0 407 {
andrewm@56 408 cleanup(&gContext, gUserData);
andrewm@0 409
andrewm@0 410 // Clean up the auxiliary tasks
andrewm@0 411 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 412 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 413 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 414
andrewm@45 415 // Delete the task
andrewm@45 416 rt_task_delete(&taskStruct->task);
andrewm@45 417
andrewm@0 418 // Free the name string and the struct itself
andrewm@0 419 free(taskStruct->name);
andrewm@0 420 free(taskStruct);
andrewm@0 421 }
andrewm@0 422 gAuxTasks.clear();
andrewm@0 423
andrewm@45 424 // Delete the audio task and its interrupt
andrewm@50 425 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 426 rt_intr_delete(&gRTAudioInterrupt);
andrewm@50 427 #endif
andrewm@45 428 rt_task_delete(&gRTAudioThread);
andrewm@45 429
andrewm@0 430 if(gPRU != 0)
andrewm@0 431 delete gPRU;
andrewm@0 432 if(gAudioCodec != 0)
andrewm@0 433 delete gAudioCodec;
andrewm@0 434
andrewm@0 435 if(gAmplifierMutePin >= 0)
andrewm@0 436 gpio_unexport(gAmplifierMutePin);
andrewm@0 437 gAmplifierMutePin = -1;
andrewm@0 438 }
andrewm@0 439
andrewm@5 440 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 441 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 442 int BeagleRT_setDACLevel(float decibels)
andrewm@5 443 {
andrewm@5 444 if(gAudioCodec == 0)
andrewm@5 445 return -1;
andrewm@5 446 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 447 }
andrewm@5 448
andrewm@5 449 // Set the level of the ADC
andrewm@5 450 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 451 int BeagleRT_setADCLevel(float decibels)
andrewm@5 452 {
andrewm@5 453 if(gAudioCodec == 0)
andrewm@5 454 return -1;
andrewm@5 455 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 456 }
andrewm@5 457
giuliomoro@171 458 // Set the level of the Programmable Gain Amplifier
giuliomoro@171 459 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
giuliomoro@171 460 int BeagleRT_setPgaGain(float decibels, int channel){
giuliomoro@171 461 if(gAudioCodec == 0)
giuliomoro@171 462 return -1;
giuliomoro@171 463 printf("calling\n");
giuliomoro@171 464 return gAudioCodec->setPga(decibels, channel);
giuliomoro@171 465 }
giuliomoro@171 466
andrewm@5 467 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 468 // output only (not line out or speaker)
andrewm@5 469 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 470 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 471 {
andrewm@5 472 if(gAudioCodec == 0)
andrewm@5 473 return -1;
andrewm@5 474 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 475 }
andrewm@5 476
andrewm@5 477 // Mute or unmute the onboard speaker amplifiers
andrewm@5 478 // mute == 0 means unmute; otherwise mute
andrewm@5 479 // Returns 0 on success
andrewm@5 480 int BeagleRT_muteSpeakers(int mute)
andrewm@5 481 {
andrewm@5 482 int pinValue = mute ? LOW : HIGH;
andrewm@5 483
andrewm@5 484 // Check that we have an enabled pin for controlling the mute
andrewm@5 485 if(gAmplifierMutePin < 0)
andrewm@5 486 return -1;
andrewm@5 487
andrewm@5 488 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 489 }
andrewm@5 490
andrewm@0 491 // Set the verbosity level
andrewm@45 492 void BeagleRT_setVerboseLevel(int level)
andrewm@0 493 {
andrewm@0 494 gRTAudioVerbose = level;
andrewm@0 495 }