annotate core/RTAudio.cpp @ 56:3c3a1357657d newapi

Further API update to name three primary functions setup(), render() and cleanup(). Changed include paths so now can #include <BeagleRT.h>. Removed stale pru_rtaudio.bin file as this is now done as pru_rtaudio_bin.h. Updated examples to new API and fixed minor compiler warnings along the way. Network example needs further attention to compile.
author andrewm
date Wed, 15 Jul 2015 12:10:51 +0100
parents be427da6fb9c
children f944d0b60fa8
rev   line source
andrewm@0 1 /*
andrewm@0 2 * RTAudio.cpp
andrewm@0 3 *
andrewm@0 4 * Central control code for hard real-time audio on BeagleBone Black
andrewm@0 5 * using PRU and Xenomai Linux extensions. This code began as part
andrewm@0 6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
andrewm@0 7 * of London, 2013-14.
andrewm@0 8 *
andrewm@0 9 * (c) 2014 Victor Zappi and Andrew McPherson
andrewm@0 10 * Queen Mary University of London
andrewm@0 11 */
andrewm@0 12
andrewm@0 13
andrewm@0 14 #include <stdio.h>
andrewm@0 15 #include <stdlib.h>
andrewm@0 16 #include <string.h>
andrewm@0 17 #include <strings.h>
andrewm@0 18 #include <math.h>
andrewm@0 19 #include <iostream>
andrewm@0 20 #include <assert.h>
andrewm@0 21 #include <vector>
andrewm@0 22
andrewm@0 23 // Xenomai-specific includes
andrewm@0 24 #include <sys/mman.h>
andrewm@0 25 #include <native/task.h>
andrewm@0 26 #include <native/timer.h>
andrewm@45 27 #include <native/intr.h>
andrewm@0 28 #include <rtdk.h>
andrewm@0 29
andrewm@45 30 #include "../include/BeagleRT.h"
andrewm@0 31 #include "../include/PRU.h"
andrewm@0 32 #include "../include/I2c_Codec.h"
andrewm@0 33 #include "../include/GPIOcontrol.h"
giuliomoro@24 34 #include "../include/client.h"
andrewm@0 35
andrewm@45 36 // ARM interrupt number for PRU event EVTOUT7
andrewm@45 37 #define PRU_RTAUDIO_IRQ 21
andrewm@45 38
andrewm@0 39 using namespace std;
andrewm@0 40
andrewm@0 41 // Data structure to keep track of auxiliary tasks we
andrewm@0 42 // can schedule
andrewm@0 43 typedef struct {
andrewm@0 44 RT_TASK task;
andrewm@0 45 void (*function)(void);
andrewm@0 46 char *name;
andrewm@0 47 int priority;
andrewm@0 48 } InternalAuxiliaryTask;
andrewm@0 49
andrewm@0 50 const char gRTAudioThreadName[] = "beaglert-audio";
andrewm@45 51 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
andrewm@0 52
andrewm@0 53 // Real-time tasks and objects
andrewm@0 54 RT_TASK gRTAudioThread;
andrewm@50 55 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 56 RT_INTR gRTAudioInterrupt;
andrewm@50 57 #endif
andrewm@0 58 PRU *gPRU = 0;
andrewm@0 59 I2c_Codec *gAudioCodec = 0;
andrewm@0 60
andrewm@0 61 vector<InternalAuxiliaryTask*> gAuxTasks;
andrewm@0 62
andrewm@0 63 // Flag which tells the audio task to stop
andrewm@0 64 bool gShouldStop = false;
andrewm@0 65
andrewm@0 66 // general settings
andrewm@45 67 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
andrewm@0 68 int gRTAudioVerbose = 0; // Verbosity level for debugging
andrewm@0 69 int gAmplifierMutePin = -1;
andrewm@5 70 int gAmplifierShouldBeginMuted = 0;
andrewm@0 71
andrewm@45 72 // Context which holds all the audio/sensor data passed to the render routines
andrewm@45 73 BeagleRTContext gContext;
andrewm@45 74
andrewm@45 75 // User data passed in from main()
andrewm@45 76 void *gUserData;
andrewm@0 77
andrewm@0 78 // initAudio() prepares the infrastructure for running PRU-based real-time
andrewm@0 79 // audio, but does not actually start the calculations.
andrewm@0 80 // periodSize indicates the number of _sensor_ frames per period: the audio period size
andrewm@0 81 // is twice this value. In total, the audio latency in frames will be 4*periodSize,
andrewm@0 82 // plus any latency inherent in the ADCs and DACs themselves.
giuliomoro@19 83 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
giuliomoro@19 84 // numAnalogChannels indicates how many ADC and DAC channels to use.
andrewm@56 85 // userData is an opaque pointer which will be passed through to the setup()
andrewm@0 86 // function for application-specific use
andrewm@0 87 //
andrewm@0 88 // Returns 0 on success.
andrewm@0 89
andrewm@45 90 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
andrewm@0 91 {
andrewm@0 92 rt_print_auto_init(1);
andrewm@45 93
andrewm@45 94 BeagleRT_setVerboseLevel(settings->verbose);
andrewm@45 95 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
andrewm@45 96 gUserData = userData;
andrewm@45 97
andrewm@45 98 // Initialise context data structure
andrewm@45 99 memset(&gContext, 0, sizeof(BeagleRTContext));
andrewm@0 100
andrewm@5 101 if(gRTAudioVerbose) {
andrewm@5 102 cout << "Starting with period size " << settings->periodSize << "; ";
giuliomoro@19 103 if(settings->useAnalog)
giuliomoro@19 104 cout << "analog enabled\n";
andrewm@5 105 else
giuliomoro@19 106 cout << "analog disabled\n";
andrewm@5 107 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
andrewm@5 108 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
andrewm@5 109 if(settings->beginMuted)
andrewm@5 110 cout << "Beginning with speaker muted\n";
andrewm@5 111 }
andrewm@0 112
andrewm@0 113 // Prepare GPIO pins for amplifier mute and status LED
andrewm@5 114 if(settings->ampMutePin >= 0) {
andrewm@5 115 gAmplifierMutePin = settings->ampMutePin;
andrewm@5 116 gAmplifierShouldBeginMuted = settings->beginMuted;
andrewm@0 117
andrewm@5 118 if(gpio_export(settings->ampMutePin)) {
andrewm@0 119 if(gRTAudioVerbose)
giuliomoro@16 120 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
andrewm@0 121 }
andrewm@5 122 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
andrewm@0 123 if(gRTAudioVerbose)
andrewm@0 124 cout << "Couldn't set direction on amplifier mute pin\n";
andrewm@0 125 return -1;
andrewm@0 126 }
andrewm@5 127 if(gpio_set_value(settings->ampMutePin, LOW)) {
andrewm@0 128 if(gRTAudioVerbose)
andrewm@0 129 cout << "Couldn't set value on amplifier mute pin\n";
andrewm@0 130 return -1;
andrewm@0 131 }
andrewm@0 132 }
andrewm@0 133
giuliomoro@19 134 // Limit the analog channels to sane values
giuliomoro@19 135 if(settings->numAnalogChannels >= 8)
giuliomoro@19 136 settings->numAnalogChannels = 8;
giuliomoro@19 137 else if(settings->numAnalogChannels >= 4)
giuliomoro@19 138 settings->numAnalogChannels = 4;
andrewm@12 139 else
giuliomoro@19 140 settings->numAnalogChannels = 2;
andrewm@12 141
andrewm@12 142 // Sanity check the combination of channels and period size
giuliomoro@19 143 if(settings->numAnalogChannels <= 4 && settings->periodSize < 2) {
giuliomoro@19 144 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 145 return 1;
andrewm@12 146 }
giuliomoro@19 147 if(settings->numAnalogChannels <= 2 && settings->periodSize < 4) {
giuliomoro@19 148 cout << "Error: " << settings->numAnalogChannels << " channels and period size of " << settings->periodSize << " not supported.\n";
andrewm@12 149 return 1;
andrewm@12 150 }
andrewm@12 151
andrewm@45 152 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
andrewm@45 153 gContext.audioSampleRate = 44100.0;
andrewm@45 154 gContext.audioChannels = 2;
andrewm@45 155
andrewm@45 156 if(settings->useAnalog) {
andrewm@45 157 gContext.audioFrames = settings->periodSize * settings->numAnalogChannels / 4;
andrewm@45 158
andrewm@45 159 gContext.analogFrames = settings->periodSize;
andrewm@45 160 gContext.analogChannels = settings->numAnalogChannels;
andrewm@45 161 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
andrewm@45 162 }
andrewm@45 163 else {
andrewm@45 164 gContext.audioFrames = settings->periodSize * 2;
andrewm@45 165
andrewm@45 166 gContext.analogFrames = 0;
andrewm@45 167 gContext.analogChannels = 0;
andrewm@45 168 gContext.analogSampleRate = 0;
andrewm@45 169 }
andrewm@45 170
andrewm@45 171 // For now, digital frame rate is equal to audio frame rate
andrewm@45 172 if(settings->useDigital) {
andrewm@45 173 gContext.digitalFrames = gContext.audioFrames;
andrewm@45 174 gContext.digitalSampleRate = gContext.audioSampleRate;
andrewm@45 175 gContext.digitalChannels = settings->numDigitalChannels;
andrewm@45 176 }
andrewm@45 177 else {
andrewm@45 178 gContext.digitalFrames = 0;
andrewm@45 179 gContext.digitalSampleRate = 0;
andrewm@45 180 gContext.digitalChannels = 0;
andrewm@45 181 }
andrewm@45 182
andrewm@45 183 // Set flags based on init settings
andrewm@45 184 if(settings->interleave)
andrewm@45 185 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
andrewm@45 186 if(settings->analogOutputsPersist)
andrewm@45 187 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
andrewm@45 188
andrewm@0 189 // Use PRU for audio
andrewm@45 190 gPRU = new PRU(&gContext);
andrewm@0 191 gAudioCodec = new I2c_Codec();
andrewm@0 192
andrewm@45 193 // Initialise the GPIO pins, including possibly the digital pins in the render routines
andrewm@45 194 if(gPRU->prepareGPIO(1, 1)) {
andrewm@0 195 cout << "Error: unable to prepare GPIO for PRU audio\n";
andrewm@0 196 return 1;
andrewm@0 197 }
andrewm@45 198
andrewm@45 199 // Get the PRU memory buffers ready to go
giuliomoro@19 200 if(gPRU->initialise(0, settings->periodSize, settings->numAnalogChannels, true)) {
andrewm@0 201 cout << "Error: unable to initialise PRU\n";
andrewm@0 202 return 1;
andrewm@0 203 }
andrewm@45 204
andrewm@45 205 // Prepare the audio codec, which clocks the whole system
andrewm@5 206 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
andrewm@0 207 cout << "Unable to open codec I2C\n";
andrewm@0 208 return 1;
andrewm@0 209 }
andrewm@0 210 if(gAudioCodec->initCodec()) {
andrewm@0 211 cout << "Error: unable to initialise audio codec\n";
andrewm@0 212 return 1;
andrewm@0 213 }
andrewm@0 214
andrewm@5 215 // Set default volume levels
andrewm@5 216 BeagleRT_setDACLevel(settings->dacLevel);
andrewm@5 217 BeagleRT_setADCLevel(settings->adcLevel);
andrewm@5 218 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
andrewm@5 219
andrewm@45 220 // Call the user-defined initialisation function
andrewm@56 221 if(!setup(&gContext, userData)) {
andrewm@0 222 cout << "Couldn't initialise audio rendering\n";
andrewm@0 223 return 1;
andrewm@0 224 }
andrewm@0 225
andrewm@0 226 return 0;
andrewm@0 227 }
andrewm@0 228
andrewm@0 229 // audioLoop() is the main function which starts the PRU audio code
andrewm@0 230 // and then transfers control to the PRU object. The PRU object in
andrewm@0 231 // turn will call the audio render() callback function every time
andrewm@0 232 // there is new data to process.
andrewm@0 233
andrewm@0 234 void audioLoop(void *)
andrewm@0 235 {
andrewm@0 236 if(gRTAudioVerbose==1)
andrewm@0 237 rt_printf("_________________Audio Thread!\n");
andrewm@0 238
andrewm@0 239 // PRU audio
andrewm@0 240 assert(gAudioCodec != 0 && gPRU != 0);
andrewm@0 241
andrewm@0 242 if(gAudioCodec->startAudio(0)) {
andrewm@0 243 rt_printf("Error: unable to start I2C audio codec\n");
andrewm@0 244 gShouldStop = 1;
andrewm@0 245 }
andrewm@0 246 else {
giuliomoro@16 247 if(gPRU->start(gPRUFilename)) {
giuliomoro@16 248 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
andrewm@0 249 gShouldStop = 1;
andrewm@0 250 }
andrewm@0 251 else {
andrewm@0 252 // All systems go. Run the loop; it will end when gShouldStop is set to 1
andrewm@5 253
andrewm@5 254 if(!gAmplifierShouldBeginMuted) {
andrewm@5 255 // First unmute the amplifier
andrewm@5 256 if(BeagleRT_muteSpeakers(0)) {
andrewm@5 257 if(gRTAudioVerbose)
andrewm@5 258 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
andrewm@5 259 }
andrewm@0 260 }
andrewm@0 261
andrewm@50 262 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 263 gPRU->loop(&gRTAudioInterrupt, gUserData);
andrewm@50 264 #else
andrewm@50 265 gPRU->loop(0, gUserData);
andrewm@50 266 #endif
andrewm@0 267 // Now clean up
andrewm@0 268 // gPRU->waitForFinish();
andrewm@0 269 gPRU->disable();
andrewm@0 270 gAudioCodec->stopAudio();
andrewm@0 271 gPRU->cleanupGPIO();
andrewm@0 272 }
andrewm@0 273 }
andrewm@0 274
andrewm@0 275 if(gRTAudioVerbose == 1)
andrewm@0 276 rt_printf("audio thread ended\n");
andrewm@0 277 }
andrewm@0 278
andrewm@0 279 // Create a calculation loop which can run independently of the audio, at a different
andrewm@45 280 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
andrewm@45 281 // priority should be generally be less than this.
andrewm@0 282 // Returns an (opaque) pointer to the created task on success; 0 on failure
andrewm@47 283 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name)
andrewm@0 284 {
andrewm@0 285 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
andrewm@0 286
andrewm@0 287 // Attempt to create the task
andrewm@0 288 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
andrewm@0 289 cout << "Error: unable to create auxiliary task " << name << endl;
andrewm@0 290 free(newTask);
andrewm@0 291 return 0;
andrewm@0 292 }
andrewm@0 293
andrewm@0 294 // Populate the rest of the data structure and store it in the vector
andrewm@0 295 newTask->function = functionToCall;
andrewm@0 296 newTask->name = strdup(name);
andrewm@0 297 newTask->priority = priority;
andrewm@0 298
andrewm@0 299 gAuxTasks.push_back(newTask);
andrewm@0 300
andrewm@0 301 return (AuxiliaryTask)newTask;
andrewm@0 302 }
andrewm@0 303
andrewm@0 304 // Schedule a previously created auxiliary task. It will run when the priority rules next
andrewm@0 305 // allow it to be scheduled.
andrewm@47 306 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
andrewm@0 307 {
andrewm@0 308 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
andrewm@0 309
andrewm@0 310 rt_task_resume(&taskToSchedule->task);
andrewm@0 311 }
andrewm@0 312
andrewm@0 313 // Calculation loop that can be used for other tasks running at a lower
andrewm@0 314 // priority than the audio thread. Simple wrapper for Xenomai calls.
andrewm@0 315 // Treat the argument as containing the task structure
andrewm@0 316 void auxiliaryTaskLoop(void *taskStruct)
andrewm@0 317 {
andrewm@0 318 // Get function to call from the argument
andrewm@0 319 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
andrewm@0 320 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
andrewm@0 321
andrewm@0 322 // Wait for a notification
andrewm@0 323 rt_task_suspend(NULL);
andrewm@0 324
andrewm@0 325 while(!gShouldStop) {
andrewm@0 326 // Then run the calculations
andrewm@0 327 auxiliary_function();
andrewm@0 328
andrewm@0 329 // Wait for a notification
andrewm@0 330 rt_task_suspend(NULL);
andrewm@0 331 }
andrewm@0 332
andrewm@0 333 if(gRTAudioVerbose == 1)
andrewm@0 334 rt_printf("auxiliary task %s ended\n", name);
andrewm@0 335 }
andrewm@0 336
andrewm@0 337 // startAudio() should be called only after initAudio() successfully completes.
andrewm@0 338 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
andrewm@0 339 // on success.
andrewm@0 340
andrewm@5 341 int BeagleRT_startAudio()
andrewm@0 342 {
andrewm@45 343 // Create audio thread with high Xenomai priority
andrewm@45 344 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
andrewm@0 345 cout << "Error: unable to create Xenomai audio thread" << endl;
andrewm@0 346 return -1;
andrewm@0 347 }
andrewm@0 348
andrewm@50 349 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 350 // Create an interrupt which the audio thread receives from the PRU
andrewm@45 351 int result = 0;
andrewm@45 352 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
andrewm@45 353 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
andrewm@45 354 return -1;
andrewm@45 355 }
andrewm@50 356 #endif
andrewm@45 357
andrewm@0 358 // Start all RT threads
andrewm@0 359 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
andrewm@0 360 cout << "Error: unable to start Xenomai audio thread" << endl;
andrewm@0 361 return -1;
andrewm@0 362 }
andrewm@0 363
andrewm@0 364 // The user may have created other tasks. Start those also.
andrewm@0 365 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 366 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 367 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 368
andrewm@0 369 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
andrewm@0 370 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
andrewm@0 371 return -1;
andrewm@0 372 }
andrewm@0 373 }
andrewm@0 374
andrewm@0 375 return 0;
andrewm@0 376 }
andrewm@0 377
andrewm@0 378 // Stop the PRU-based audio from running and wait
andrewm@0 379 // for the tasks to complete before returning.
andrewm@0 380
andrewm@5 381 void BeagleRT_stopAudio()
andrewm@0 382 {
andrewm@0 383 // Tell audio thread to stop (if this hasn't been done already)
andrewm@0 384 gShouldStop = true;
andrewm@0 385
andrewm@5 386 if(gRTAudioVerbose)
andrewm@5 387 cout << "Stopping audio...\n";
andrewm@5 388
andrewm@0 389 // Now wait for threads to respond and actually stop...
andrewm@0 390 rt_task_join(&gRTAudioThread);
andrewm@0 391
andrewm@0 392 // Stop all the auxiliary threads too
andrewm@0 393 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 394 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 395 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 396
andrewm@0 397 // Wake up each thread and join it
andrewm@0 398 rt_task_resume(&(taskStruct->task));
andrewm@0 399 rt_task_join(&(taskStruct->task));
andrewm@0 400 }
andrewm@0 401 }
andrewm@0 402
andrewm@0 403 // Free any resources associated with PRU real-time audio
andrewm@5 404 void BeagleRT_cleanupAudio()
andrewm@0 405 {
andrewm@56 406 cleanup(&gContext, gUserData);
andrewm@0 407
andrewm@0 408 // Clean up the auxiliary tasks
andrewm@0 409 vector<InternalAuxiliaryTask*>::iterator it;
andrewm@0 410 for(it = gAuxTasks.begin(); it != gAuxTasks.end(); it++) {
andrewm@0 411 InternalAuxiliaryTask *taskStruct = *it;
andrewm@0 412
andrewm@45 413 // Delete the task
andrewm@45 414 rt_task_delete(&taskStruct->task);
andrewm@45 415
andrewm@0 416 // Free the name string and the struct itself
andrewm@0 417 free(taskStruct->name);
andrewm@0 418 free(taskStruct);
andrewm@0 419 }
andrewm@0 420 gAuxTasks.clear();
andrewm@0 421
andrewm@45 422 // Delete the audio task and its interrupt
andrewm@50 423 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
andrewm@45 424 rt_intr_delete(&gRTAudioInterrupt);
andrewm@50 425 #endif
andrewm@45 426 rt_task_delete(&gRTAudioThread);
andrewm@45 427
andrewm@0 428 if(gPRU != 0)
andrewm@0 429 delete gPRU;
andrewm@0 430 if(gAudioCodec != 0)
andrewm@0 431 delete gAudioCodec;
andrewm@0 432
andrewm@0 433 if(gAmplifierMutePin >= 0)
andrewm@0 434 gpio_unexport(gAmplifierMutePin);
andrewm@0 435 gAmplifierMutePin = -1;
andrewm@0 436 }
andrewm@0 437
andrewm@5 438 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
andrewm@5 439 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 440 int BeagleRT_setDACLevel(float decibels)
andrewm@5 441 {
andrewm@5 442 if(gAudioCodec == 0)
andrewm@5 443 return -1;
andrewm@5 444 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 445 }
andrewm@5 446
andrewm@5 447 // Set the level of the ADC
andrewm@5 448 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
andrewm@5 449 int BeagleRT_setADCLevel(float decibels)
andrewm@5 450 {
andrewm@5 451 if(gAudioCodec == 0)
andrewm@5 452 return -1;
andrewm@5 453 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 454 }
andrewm@5 455
andrewm@5 456 // Set the level of the onboard headphone amplifier; affects headphone
andrewm@5 457 // output only (not line out or speaker)
andrewm@5 458 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
andrewm@5 459 int BeagleRT_setHeadphoneLevel(float decibels)
andrewm@5 460 {
andrewm@5 461 if(gAudioCodec == 0)
andrewm@5 462 return -1;
andrewm@5 463 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
andrewm@5 464 }
andrewm@5 465
andrewm@5 466 // Mute or unmute the onboard speaker amplifiers
andrewm@5 467 // mute == 0 means unmute; otherwise mute
andrewm@5 468 // Returns 0 on success
andrewm@5 469 int BeagleRT_muteSpeakers(int mute)
andrewm@5 470 {
andrewm@5 471 int pinValue = mute ? LOW : HIGH;
andrewm@5 472
andrewm@5 473 // Check that we have an enabled pin for controlling the mute
andrewm@5 474 if(gAmplifierMutePin < 0)
andrewm@5 475 return -1;
andrewm@5 476
andrewm@5 477 return gpio_set_value(gAmplifierMutePin, pinValue);
andrewm@5 478 }
andrewm@5 479
andrewm@0 480 // Set the verbosity level
andrewm@45 481 void BeagleRT_setVerboseLevel(int level)
andrewm@0 482 {
andrewm@0 483 gRTAudioVerbose = level;
andrewm@0 484 }