andrewm@0
|
1 /*
|
andrewm@0
|
2 * RTAudio.cpp
|
andrewm@0
|
3 *
|
andrewm@0
|
4 * Central control code for hard real-time audio on BeagleBone Black
|
andrewm@0
|
5 * using PRU and Xenomai Linux extensions. This code began as part
|
andrewm@0
|
6 * of the Hackable Instruments project (EPSRC) at Queen Mary University
|
andrewm@0
|
7 * of London, 2013-14.
|
andrewm@0
|
8 *
|
andrewm@0
|
9 * (c) 2014 Victor Zappi and Andrew McPherson
|
andrewm@0
|
10 * Queen Mary University of London
|
andrewm@0
|
11 */
|
andrewm@0
|
12
|
andrewm@0
|
13
|
andrewm@0
|
14 #include <stdio.h>
|
andrewm@0
|
15 #include <stdlib.h>
|
andrewm@0
|
16 #include <string.h>
|
andrewm@0
|
17 #include <strings.h>
|
andrewm@0
|
18 #include <math.h>
|
andrewm@0
|
19 #include <iostream>
|
andrewm@0
|
20 #include <assert.h>
|
andrewm@0
|
21 #include <vector>
|
andrewm@0
|
22
|
andrewm@0
|
23 // Xenomai-specific includes
|
andrewm@0
|
24 #include <sys/mman.h>
|
andrewm@0
|
25 #include <native/task.h>
|
andrewm@0
|
26 #include <native/timer.h>
|
andrewm@45
|
27 #include <native/intr.h>
|
andrewm@0
|
28 #include <rtdk.h>
|
andrewm@0
|
29
|
andrewm@45
|
30 #include "../include/BeagleRT.h"
|
andrewm@0
|
31 #include "../include/PRU.h"
|
andrewm@0
|
32 #include "../include/I2c_Codec.h"
|
andrewm@0
|
33 #include "../include/GPIOcontrol.h"
|
andrewm@0
|
34
|
andrewm@45
|
35 // ARM interrupt number for PRU event EVTOUT7
|
andrewm@45
|
36 #define PRU_RTAUDIO_IRQ 21
|
andrewm@45
|
37
|
andrewm@0
|
38 using namespace std;
|
andrewm@0
|
39
|
andrewm@0
|
40 // Data structure to keep track of auxiliary tasks we
|
andrewm@0
|
41 // can schedule
|
andrewm@0
|
42 typedef struct {
|
andrewm@0
|
43 RT_TASK task;
|
andrewm@0
|
44 void (*function)(void);
|
andrewm@0
|
45 char *name;
|
andrewm@0
|
46 int priority;
|
giuliomoro@174
|
47 bool started;
|
andrewm@0
|
48 } InternalAuxiliaryTask;
|
andrewm@0
|
49
|
andrewm@0
|
50 const char gRTAudioThreadName[] = "beaglert-audio";
|
andrewm@45
|
51 const char gRTAudioInterruptName[] = "beaglert-pru-irq";
|
andrewm@0
|
52
|
andrewm@0
|
53 // Real-time tasks and objects
|
andrewm@0
|
54 RT_TASK gRTAudioThread;
|
andrewm@50
|
55 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
56 RT_INTR gRTAudioInterrupt;
|
andrewm@50
|
57 #endif
|
andrewm@0
|
58 PRU *gPRU = 0;
|
andrewm@0
|
59 I2c_Codec *gAudioCodec = 0;
|
andrewm@0
|
60
|
giuliomoro@176
|
61 vector<InternalAuxiliaryTask*> &getAuxTasks(){
|
giuliomoro@176
|
62 static vector<InternalAuxiliaryTask*> auxTasks;
|
giuliomoro@176
|
63 return auxTasks;
|
giuliomoro@176
|
64 }
|
andrewm@0
|
65
|
andrewm@0
|
66 // Flag which tells the audio task to stop
|
andrewm@0
|
67 bool gShouldStop = false;
|
andrewm@0
|
68
|
andrewm@0
|
69 // general settings
|
andrewm@45
|
70 char gPRUFilename[MAX_PRU_FILENAME_LENGTH]; // Path to PRU binary file (internal code if empty)_
|
andrewm@0
|
71 int gRTAudioVerbose = 0; // Verbosity level for debugging
|
andrewm@0
|
72 int gAmplifierMutePin = -1;
|
andrewm@5
|
73 int gAmplifierShouldBeginMuted = 0;
|
andrewm@0
|
74
|
andrewm@45
|
75 // Context which holds all the audio/sensor data passed to the render routines
|
andrewm@45
|
76 BeagleRTContext gContext;
|
andrewm@45
|
77
|
andrewm@45
|
78 // User data passed in from main()
|
andrewm@45
|
79 void *gUserData;
|
andrewm@0
|
80
|
andrewm@0
|
81 // initAudio() prepares the infrastructure for running PRU-based real-time
|
andrewm@0
|
82 // audio, but does not actually start the calculations.
|
giuliomoro@178
|
83 // periodSize indicates the number of audio frames per period: the analog period size
|
giuliomoro@178
|
84 // will depend on the number of analog channels, in such a way that
|
giuliomoro@178
|
85 // analogPeriodSize = 4*periodSize/numAnalogChannels
|
giuliomoro@178
|
86 // In total, the audio latency in frames will be 2*periodSize,
|
andrewm@0
|
87 // plus any latency inherent in the ADCs and DACs themselves.
|
giuliomoro@19
|
88 // useAnalog indicates whether to enable the ADC and DAC or just use the audio codec.
|
giuliomoro@19
|
89 // numAnalogChannels indicates how many ADC and DAC channels to use.
|
andrewm@56
|
90 // userData is an opaque pointer which will be passed through to the setup()
|
andrewm@0
|
91 // function for application-specific use
|
andrewm@0
|
92 //
|
andrewm@0
|
93 // Returns 0 on success.
|
andrewm@0
|
94
|
andrewm@45
|
95 int BeagleRT_initAudio(BeagleRTInitSettings *settings, void *userData)
|
andrewm@0
|
96 {
|
andrewm@0
|
97 rt_print_auto_init(1);
|
andrewm@45
|
98
|
andrewm@45
|
99 BeagleRT_setVerboseLevel(settings->verbose);
|
andrewm@45
|
100 strncpy(gPRUFilename, settings->pruFilename, MAX_PRU_FILENAME_LENGTH);
|
andrewm@45
|
101 gUserData = userData;
|
andrewm@45
|
102
|
andrewm@45
|
103 // Initialise context data structure
|
andrewm@45
|
104 memset(&gContext, 0, sizeof(BeagleRTContext));
|
andrewm@0
|
105
|
andrewm@5
|
106 if(gRTAudioVerbose) {
|
andrewm@5
|
107 cout << "Starting with period size " << settings->periodSize << "; ";
|
giuliomoro@19
|
108 if(settings->useAnalog)
|
giuliomoro@19
|
109 cout << "analog enabled\n";
|
andrewm@5
|
110 else
|
giuliomoro@19
|
111 cout << "analog disabled\n";
|
andrewm@5
|
112 cout << "DAC level " << settings->dacLevel << "dB; ADC level " << settings->adcLevel;
|
andrewm@5
|
113 cout << "dB; headphone level " << settings->headphoneLevel << "dB\n";
|
andrewm@5
|
114 if(settings->beginMuted)
|
andrewm@5
|
115 cout << "Beginning with speaker muted\n";
|
andrewm@5
|
116 }
|
andrewm@0
|
117
|
andrewm@0
|
118 // Prepare GPIO pins for amplifier mute and status LED
|
andrewm@5
|
119 if(settings->ampMutePin >= 0) {
|
andrewm@5
|
120 gAmplifierMutePin = settings->ampMutePin;
|
andrewm@5
|
121 gAmplifierShouldBeginMuted = settings->beginMuted;
|
andrewm@0
|
122
|
andrewm@5
|
123 if(gpio_export(settings->ampMutePin)) {
|
andrewm@0
|
124 if(gRTAudioVerbose)
|
giuliomoro@16
|
125 cout << "Warning: couldn't export amplifier mute pin " << settings-> ampMutePin << "\n";
|
andrewm@0
|
126 }
|
andrewm@5
|
127 if(gpio_set_dir(settings->ampMutePin, OUTPUT_PIN)) {
|
andrewm@0
|
128 if(gRTAudioVerbose)
|
andrewm@0
|
129 cout << "Couldn't set direction on amplifier mute pin\n";
|
andrewm@0
|
130 return -1;
|
andrewm@0
|
131 }
|
andrewm@5
|
132 if(gpio_set_value(settings->ampMutePin, LOW)) {
|
andrewm@0
|
133 if(gRTAudioVerbose)
|
andrewm@0
|
134 cout << "Couldn't set value on amplifier mute pin\n";
|
andrewm@0
|
135 return -1;
|
andrewm@0
|
136 }
|
andrewm@0
|
137 }
|
andrewm@0
|
138
|
giuliomoro@19
|
139 // Limit the analog channels to sane values
|
giuliomoro@19
|
140 if(settings->numAnalogChannels >= 8)
|
giuliomoro@19
|
141 settings->numAnalogChannels = 8;
|
giuliomoro@19
|
142 else if(settings->numAnalogChannels >= 4)
|
giuliomoro@19
|
143 settings->numAnalogChannels = 4;
|
andrewm@12
|
144 else
|
giuliomoro@19
|
145 settings->numAnalogChannels = 2;
|
andrewm@12
|
146
|
andrewm@45
|
147 // Initialise the rendering environment: sample rates, frame counts, numbers of channels
|
andrewm@45
|
148 gContext.audioSampleRate = 44100.0;
|
andrewm@45
|
149 gContext.audioChannels = 2;
|
andrewm@45
|
150
|
andrewm@45
|
151 if(settings->useAnalog) {
|
giuliomoro@178
|
152 gContext.audioFrames = settings->periodSize;
|
andrewm@45
|
153
|
giuliomoro@178
|
154 gContext.analogFrames = gContext.audioFrames * 4 / settings->numAnalogChannels;
|
andrewm@45
|
155 gContext.analogChannels = settings->numAnalogChannels;
|
andrewm@45
|
156 gContext.analogSampleRate = gContext.audioSampleRate * 4.0 / (float)settings->numAnalogChannels;
|
andrewm@45
|
157 }
|
andrewm@45
|
158 else {
|
giuliomoro@178
|
159 gContext.audioFrames = settings->periodSize;
|
andrewm@45
|
160
|
andrewm@45
|
161 gContext.analogFrames = 0;
|
andrewm@45
|
162 gContext.analogChannels = 0;
|
andrewm@45
|
163 gContext.analogSampleRate = 0;
|
andrewm@45
|
164 }
|
andrewm@45
|
165
|
giuliomoro@178
|
166 // Sanity check the combination of channels and period size
|
giuliomoro@178
|
167 if( (gContext.analogChannels <= 4 && gContext.analogFrames < 2) ||
|
giuliomoro@178
|
168 (gContext.analogChannels <= 2 && gContext.analogFrames < 4))
|
giuliomoro@178
|
169 {
|
giuliomoro@178
|
170 cout << "Error: " << gContext.analogChannels << " channels and period size of " << gContext.analogFrames << " not supported.\n";
|
giuliomoro@178
|
171 return 1;
|
giuliomoro@178
|
172 }
|
giuliomoro@178
|
173
|
andrewm@45
|
174 // For now, digital frame rate is equal to audio frame rate
|
andrewm@45
|
175 if(settings->useDigital) {
|
andrewm@45
|
176 gContext.digitalFrames = gContext.audioFrames;
|
andrewm@45
|
177 gContext.digitalSampleRate = gContext.audioSampleRate;
|
andrewm@45
|
178 gContext.digitalChannels = settings->numDigitalChannels;
|
andrewm@45
|
179 }
|
andrewm@45
|
180 else {
|
andrewm@45
|
181 gContext.digitalFrames = 0;
|
andrewm@45
|
182 gContext.digitalSampleRate = 0;
|
andrewm@45
|
183 gContext.digitalChannels = 0;
|
andrewm@45
|
184 }
|
andrewm@45
|
185
|
andrewm@45
|
186 // Set flags based on init settings
|
andrewm@45
|
187 if(settings->interleave)
|
andrewm@45
|
188 gContext.flags |= BEAGLERT_FLAG_INTERLEAVED;
|
andrewm@45
|
189 if(settings->analogOutputsPersist)
|
andrewm@45
|
190 gContext.flags |= BEAGLERT_FLAG_ANALOG_OUTPUTS_PERSIST;
|
andrewm@45
|
191
|
andrewm@0
|
192 // Use PRU for audio
|
andrewm@45
|
193 gPRU = new PRU(&gContext);
|
andrewm@0
|
194 gAudioCodec = new I2c_Codec();
|
andrewm@0
|
195
|
andrewm@45
|
196 // Initialise the GPIO pins, including possibly the digital pins in the render routines
|
andrewm@45
|
197 if(gPRU->prepareGPIO(1, 1)) {
|
andrewm@0
|
198 cout << "Error: unable to prepare GPIO for PRU audio\n";
|
andrewm@0
|
199 return 1;
|
andrewm@0
|
200 }
|
andrewm@45
|
201
|
andrewm@45
|
202 // Get the PRU memory buffers ready to go
|
giuliomoro@178
|
203 if(gPRU->initialise(0, gContext.analogFrames, gContext.analogChannels, true)) {
|
andrewm@0
|
204 cout << "Error: unable to initialise PRU\n";
|
andrewm@0
|
205 return 1;
|
andrewm@0
|
206 }
|
andrewm@45
|
207
|
andrewm@45
|
208 // Prepare the audio codec, which clocks the whole system
|
andrewm@5
|
209 if(gAudioCodec->initI2C_RW(2, settings->codecI2CAddress, -1)) {
|
andrewm@0
|
210 cout << "Unable to open codec I2C\n";
|
andrewm@0
|
211 return 1;
|
andrewm@0
|
212 }
|
andrewm@0
|
213 if(gAudioCodec->initCodec()) {
|
andrewm@0
|
214 cout << "Error: unable to initialise audio codec\n";
|
andrewm@0
|
215 return 1;
|
andrewm@0
|
216 }
|
giuliomoro@172
|
217
|
andrewm@5
|
218 // Set default volume levels
|
andrewm@5
|
219 BeagleRT_setDACLevel(settings->dacLevel);
|
andrewm@5
|
220 BeagleRT_setADCLevel(settings->adcLevel);
|
giuliomoro@174
|
221 // TODO: add more argument checks
|
giuliomoro@171
|
222 for(int n = 0; n < 2; n++){
|
giuliomoro@172
|
223 if(settings->pgaGain[n] > 59.5){
|
giuliomoro@172
|
224 std::cerr << "PGA gain out of range [0,59.5]\n";
|
giuliomoro@172
|
225 exit(1);
|
giuliomoro@172
|
226 }
|
giuliomoro@171
|
227 BeagleRT_setPgaGain(settings->pgaGain[n], n);
|
giuliomoro@171
|
228 }
|
andrewm@5
|
229 BeagleRT_setHeadphoneLevel(settings->headphoneLevel);
|
andrewm@5
|
230
|
andrewm@45
|
231 // Call the user-defined initialisation function
|
andrewm@56
|
232 if(!setup(&gContext, userData)) {
|
andrewm@0
|
233 cout << "Couldn't initialise audio rendering\n";
|
andrewm@0
|
234 return 1;
|
andrewm@0
|
235 }
|
andrewm@0
|
236
|
andrewm@0
|
237 return 0;
|
andrewm@0
|
238 }
|
andrewm@0
|
239
|
andrewm@0
|
240 // audioLoop() is the main function which starts the PRU audio code
|
andrewm@0
|
241 // and then transfers control to the PRU object. The PRU object in
|
andrewm@0
|
242 // turn will call the audio render() callback function every time
|
andrewm@0
|
243 // there is new data to process.
|
andrewm@0
|
244
|
andrewm@0
|
245 void audioLoop(void *)
|
andrewm@0
|
246 {
|
andrewm@0
|
247 if(gRTAudioVerbose==1)
|
andrewm@0
|
248 rt_printf("_________________Audio Thread!\n");
|
andrewm@0
|
249
|
andrewm@0
|
250 // PRU audio
|
andrewm@0
|
251 assert(gAudioCodec != 0 && gPRU != 0);
|
andrewm@0
|
252
|
andrewm@0
|
253 if(gAudioCodec->startAudio(0)) {
|
andrewm@0
|
254 rt_printf("Error: unable to start I2C audio codec\n");
|
andrewm@0
|
255 gShouldStop = 1;
|
andrewm@0
|
256 }
|
andrewm@0
|
257 else {
|
giuliomoro@16
|
258 if(gPRU->start(gPRUFilename)) {
|
giuliomoro@16
|
259 rt_printf("Error: unable to start PRU from file %s\n", gPRUFilename);
|
andrewm@0
|
260 gShouldStop = 1;
|
andrewm@0
|
261 }
|
andrewm@0
|
262 else {
|
andrewm@0
|
263 // All systems go. Run the loop; it will end when gShouldStop is set to 1
|
andrewm@5
|
264
|
andrewm@5
|
265 if(!gAmplifierShouldBeginMuted) {
|
andrewm@5
|
266 // First unmute the amplifier
|
andrewm@5
|
267 if(BeagleRT_muteSpeakers(0)) {
|
andrewm@5
|
268 if(gRTAudioVerbose)
|
andrewm@5
|
269 rt_printf("Warning: couldn't set value (high) on amplifier mute pin\n");
|
andrewm@5
|
270 }
|
andrewm@0
|
271 }
|
andrewm@0
|
272
|
andrewm@50
|
273 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
274 gPRU->loop(&gRTAudioInterrupt, gUserData);
|
andrewm@50
|
275 #else
|
andrewm@50
|
276 gPRU->loop(0, gUserData);
|
andrewm@50
|
277 #endif
|
andrewm@0
|
278 // Now clean up
|
andrewm@0
|
279 // gPRU->waitForFinish();
|
andrewm@0
|
280 gPRU->disable();
|
andrewm@0
|
281 gAudioCodec->stopAudio();
|
andrewm@0
|
282 gPRU->cleanupGPIO();
|
andrewm@0
|
283 }
|
andrewm@0
|
284 }
|
andrewm@0
|
285
|
andrewm@0
|
286 if(gRTAudioVerbose == 1)
|
andrewm@0
|
287 rt_printf("audio thread ended\n");
|
andrewm@0
|
288 }
|
andrewm@0
|
289
|
andrewm@0
|
290 // Create a calculation loop which can run independently of the audio, at a different
|
andrewm@45
|
291 // (equal or lower) priority. Audio priority is defined in BEAGLERT_AUDIO_PRIORITY;
|
andrewm@45
|
292 // priority should be generally be less than this.
|
andrewm@0
|
293 // Returns an (opaque) pointer to the created task on success; 0 on failure
|
andrewm@47
|
294 AuxiliaryTask BeagleRT_createAuxiliaryTask(void (*functionToCall)(void), int priority, const char *name)
|
andrewm@0
|
295 {
|
andrewm@0
|
296 InternalAuxiliaryTask *newTask = (InternalAuxiliaryTask*)malloc(sizeof(InternalAuxiliaryTask));
|
andrewm@0
|
297
|
andrewm@0
|
298 // Attempt to create the task
|
andrewm@0
|
299 if(rt_task_create(&(newTask->task), name, 0, priority, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
300 cout << "Error: unable to create auxiliary task " << name << endl;
|
andrewm@0
|
301 free(newTask);
|
andrewm@0
|
302 return 0;
|
andrewm@0
|
303 }
|
andrewm@0
|
304
|
andrewm@0
|
305 // Populate the rest of the data structure and store it in the vector
|
andrewm@0
|
306 newTask->function = functionToCall;
|
andrewm@0
|
307 newTask->name = strdup(name);
|
andrewm@0
|
308 newTask->priority = priority;
|
giuliomoro@174
|
309 newTask->started = false;
|
andrewm@0
|
310
|
giuliomoro@176
|
311 getAuxTasks().push_back(newTask);
|
andrewm@0
|
312
|
andrewm@0
|
313 return (AuxiliaryTask)newTask;
|
andrewm@0
|
314 }
|
andrewm@0
|
315
|
giuliomoro@174
|
316 // Schedule a previously created (and started) auxiliary task. It will run when the priority rules next
|
andrewm@0
|
317 // allow it to be scheduled.
|
andrewm@47
|
318 void BeagleRT_scheduleAuxiliaryTask(AuxiliaryTask task)
|
andrewm@0
|
319 {
|
andrewm@0
|
320 InternalAuxiliaryTask *taskToSchedule = (InternalAuxiliaryTask *)task;
|
giuliomoro@174
|
321 if(taskToSchedule->started == false){ // Note: this is not the safest method to check if a task
|
giuliomoro@174
|
322 BeagleRT_startAuxiliaryTask(task); // is started (or ready to be resumed), but it probably is the fastest.
|
giuliomoro@174
|
323 // A safer approach would use rt_task_inquire()
|
giuliomoro@174
|
324 }
|
andrewm@0
|
325 rt_task_resume(&taskToSchedule->task);
|
andrewm@0
|
326 }
|
andrewm@0
|
327
|
andrewm@0
|
328 // Calculation loop that can be used for other tasks running at a lower
|
andrewm@0
|
329 // priority than the audio thread. Simple wrapper for Xenomai calls.
|
andrewm@0
|
330 // Treat the argument as containing the task structure
|
andrewm@0
|
331 void auxiliaryTaskLoop(void *taskStruct)
|
andrewm@0
|
332 {
|
andrewm@0
|
333 // Get function to call from the argument
|
andrewm@0
|
334 void (*auxiliary_function)(void) = ((InternalAuxiliaryTask *)taskStruct)->function;
|
andrewm@0
|
335 const char *name = ((InternalAuxiliaryTask *)taskStruct)->name;
|
andrewm@0
|
336
|
andrewm@0
|
337 // Wait for a notification
|
andrewm@0
|
338 rt_task_suspend(NULL);
|
andrewm@0
|
339
|
andrewm@0
|
340 while(!gShouldStop) {
|
andrewm@0
|
341 // Then run the calculations
|
andrewm@0
|
342 auxiliary_function();
|
andrewm@0
|
343
|
andrewm@0
|
344 // Wait for a notification
|
andrewm@0
|
345 rt_task_suspend(NULL);
|
andrewm@0
|
346 }
|
andrewm@0
|
347
|
andrewm@0
|
348 if(gRTAudioVerbose == 1)
|
andrewm@0
|
349 rt_printf("auxiliary task %s ended\n", name);
|
andrewm@0
|
350 }
|
andrewm@0
|
351
|
giuliomoro@174
|
352
|
giuliomoro@174
|
353 int BeagleRT_startAuxiliaryTask(AuxiliaryTask task){
|
giuliomoro@174
|
354 InternalAuxiliaryTask *taskStruct;
|
giuliomoro@174
|
355 taskStruct = (InternalAuxiliaryTask *)task;
|
giuliomoro@174
|
356 if(taskStruct->started == true)
|
giuliomoro@174
|
357 return 0;
|
giuliomoro@174
|
358 if(rt_task_start(&(taskStruct->task), &auxiliaryTaskLoop, taskStruct)) {
|
giuliomoro@174
|
359 cerr << "Error: unable to start Xenomai task " << taskStruct->name << endl;
|
giuliomoro@174
|
360 return -1;
|
giuliomoro@174
|
361 }
|
giuliomoro@174
|
362 taskStruct->started = true;
|
giuliomoro@174
|
363 return 0;
|
giuliomoro@174
|
364 }
|
giuliomoro@174
|
365
|
andrewm@0
|
366 // startAudio() should be called only after initAudio() successfully completes.
|
andrewm@0
|
367 // It launches the real-time Xenomai task which runs the audio loop. Returns 0
|
andrewm@0
|
368 // on success.
|
andrewm@0
|
369
|
andrewm@5
|
370 int BeagleRT_startAudio()
|
andrewm@0
|
371 {
|
andrewm@45
|
372 // Create audio thread with high Xenomai priority
|
andrewm@45
|
373 if(rt_task_create(&gRTAudioThread, gRTAudioThreadName, 0, BEAGLERT_AUDIO_PRIORITY, T_JOINABLE | T_FPU)) {
|
andrewm@0
|
374 cout << "Error: unable to create Xenomai audio thread" << endl;
|
andrewm@0
|
375 return -1;
|
andrewm@0
|
376 }
|
andrewm@0
|
377
|
andrewm@50
|
378 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
379 // Create an interrupt which the audio thread receives from the PRU
|
andrewm@45
|
380 int result = 0;
|
andrewm@45
|
381 if((result = rt_intr_create(&gRTAudioInterrupt, gRTAudioInterruptName, PRU_RTAUDIO_IRQ, I_NOAUTOENA)) != 0) {
|
andrewm@45
|
382 cout << "Error: unable to create Xenomai interrupt for PRU (error " << result << ")" << endl;
|
andrewm@45
|
383 return -1;
|
andrewm@45
|
384 }
|
andrewm@50
|
385 #endif
|
andrewm@45
|
386
|
andrewm@0
|
387 // Start all RT threads
|
andrewm@0
|
388 if(rt_task_start(&gRTAudioThread, &audioLoop, 0)) {
|
andrewm@0
|
389 cout << "Error: unable to start Xenomai audio thread" << endl;
|
andrewm@0
|
390 return -1;
|
andrewm@0
|
391 }
|
andrewm@0
|
392
|
andrewm@0
|
393 // The user may have created other tasks. Start those also.
|
andrewm@0
|
394 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
395 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
giuliomoro@177
|
396 int ret = BeagleRT_startAuxiliaryTask(*it);
|
giuliomoro@177
|
397 if(ret != 0)
|
giuliomoro@177
|
398 return -2;
|
andrewm@0
|
399 }
|
andrewm@0
|
400 return 0;
|
andrewm@0
|
401 }
|
andrewm@0
|
402
|
andrewm@0
|
403 // Stop the PRU-based audio from running and wait
|
andrewm@0
|
404 // for the tasks to complete before returning.
|
andrewm@0
|
405
|
andrewm@5
|
406 void BeagleRT_stopAudio()
|
andrewm@0
|
407 {
|
andrewm@0
|
408 // Tell audio thread to stop (if this hasn't been done already)
|
andrewm@0
|
409 gShouldStop = true;
|
andrewm@0
|
410
|
andrewm@5
|
411 if(gRTAudioVerbose)
|
andrewm@5
|
412 cout << "Stopping audio...\n";
|
andrewm@5
|
413
|
andrewm@0
|
414 // Now wait for threads to respond and actually stop...
|
andrewm@0
|
415 rt_task_join(&gRTAudioThread);
|
andrewm@0
|
416
|
andrewm@0
|
417 // Stop all the auxiliary threads too
|
andrewm@0
|
418 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
419 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
andrewm@0
|
420 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
421
|
andrewm@0
|
422 // Wake up each thread and join it
|
andrewm@0
|
423 rt_task_resume(&(taskStruct->task));
|
andrewm@0
|
424 rt_task_join(&(taskStruct->task));
|
andrewm@0
|
425 }
|
andrewm@0
|
426 }
|
andrewm@0
|
427
|
andrewm@0
|
428 // Free any resources associated with PRU real-time audio
|
andrewm@5
|
429 void BeagleRT_cleanupAudio()
|
andrewm@0
|
430 {
|
andrewm@56
|
431 cleanup(&gContext, gUserData);
|
andrewm@0
|
432
|
andrewm@0
|
433 // Clean up the auxiliary tasks
|
andrewm@0
|
434 vector<InternalAuxiliaryTask*>::iterator it;
|
giuliomoro@176
|
435 for(it = getAuxTasks().begin(); it != getAuxTasks().end(); it++) {
|
andrewm@0
|
436 InternalAuxiliaryTask *taskStruct = *it;
|
andrewm@0
|
437
|
andrewm@45
|
438 // Delete the task
|
andrewm@45
|
439 rt_task_delete(&taskStruct->task);
|
andrewm@45
|
440
|
andrewm@0
|
441 // Free the name string and the struct itself
|
andrewm@0
|
442 free(taskStruct->name);
|
andrewm@0
|
443 free(taskStruct);
|
andrewm@0
|
444 }
|
giuliomoro@176
|
445 getAuxTasks().clear();
|
andrewm@0
|
446
|
andrewm@45
|
447 // Delete the audio task and its interrupt
|
andrewm@50
|
448 #ifdef BEAGLERT_USE_XENOMAI_INTERRUPTS
|
andrewm@45
|
449 rt_intr_delete(&gRTAudioInterrupt);
|
andrewm@50
|
450 #endif
|
andrewm@45
|
451 rt_task_delete(&gRTAudioThread);
|
andrewm@45
|
452
|
andrewm@0
|
453 if(gPRU != 0)
|
andrewm@0
|
454 delete gPRU;
|
andrewm@0
|
455 if(gAudioCodec != 0)
|
andrewm@0
|
456 delete gAudioCodec;
|
andrewm@0
|
457
|
andrewm@0
|
458 if(gAmplifierMutePin >= 0)
|
andrewm@0
|
459 gpio_unexport(gAmplifierMutePin);
|
andrewm@0
|
460 gAmplifierMutePin = -1;
|
andrewm@0
|
461 }
|
andrewm@0
|
462
|
andrewm@5
|
463 // Set the level of the DAC; affects all outputs (headphone, line, speaker)
|
andrewm@5
|
464 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
465 int BeagleRT_setDACLevel(float decibels)
|
andrewm@5
|
466 {
|
andrewm@5
|
467 if(gAudioCodec == 0)
|
andrewm@5
|
468 return -1;
|
andrewm@5
|
469 return gAudioCodec->setDACVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
470 }
|
andrewm@5
|
471
|
andrewm@5
|
472 // Set the level of the ADC
|
andrewm@5
|
473 // 0dB is the maximum, -12dB is the minimum; 1.5dB steps
|
andrewm@5
|
474 int BeagleRT_setADCLevel(float decibels)
|
andrewm@5
|
475 {
|
andrewm@5
|
476 if(gAudioCodec == 0)
|
andrewm@5
|
477 return -1;
|
andrewm@5
|
478 return gAudioCodec->setADCVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
479 }
|
andrewm@5
|
480
|
giuliomoro@171
|
481 // Set the level of the Programmable Gain Amplifier
|
giuliomoro@171
|
482 // 59.5dB is maximum, 0dB is minimum; 0.5dB steps
|
giuliomoro@171
|
483 int BeagleRT_setPgaGain(float decibels, int channel){
|
giuliomoro@171
|
484 if(gAudioCodec == 0)
|
giuliomoro@171
|
485 return -1;
|
giuliomoro@171
|
486 return gAudioCodec->setPga(decibels, channel);
|
giuliomoro@171
|
487 }
|
giuliomoro@171
|
488
|
andrewm@5
|
489 // Set the level of the onboard headphone amplifier; affects headphone
|
andrewm@5
|
490 // output only (not line out or speaker)
|
andrewm@5
|
491 // 0dB is the maximum, -63.5dB is the minimum; 0.5dB steps
|
andrewm@5
|
492 int BeagleRT_setHeadphoneLevel(float decibels)
|
andrewm@5
|
493 {
|
andrewm@5
|
494 if(gAudioCodec == 0)
|
andrewm@5
|
495 return -1;
|
andrewm@5
|
496 return gAudioCodec->setHPVolume((int)floorf(decibels * 2.0 + 0.5));
|
andrewm@5
|
497 }
|
andrewm@5
|
498
|
andrewm@5
|
499 // Mute or unmute the onboard speaker amplifiers
|
andrewm@5
|
500 // mute == 0 means unmute; otherwise mute
|
andrewm@5
|
501 // Returns 0 on success
|
andrewm@5
|
502 int BeagleRT_muteSpeakers(int mute)
|
andrewm@5
|
503 {
|
andrewm@5
|
504 int pinValue = mute ? LOW : HIGH;
|
andrewm@5
|
505
|
andrewm@5
|
506 // Check that we have an enabled pin for controlling the mute
|
andrewm@5
|
507 if(gAmplifierMutePin < 0)
|
andrewm@5
|
508 return -1;
|
andrewm@5
|
509
|
andrewm@5
|
510 return gpio_set_value(gAmplifierMutePin, pinValue);
|
andrewm@5
|
511 }
|
andrewm@5
|
512
|
andrewm@0
|
513 // Set the verbosity level
|
andrewm@45
|
514 void BeagleRT_setVerboseLevel(int level)
|
andrewm@0
|
515 {
|
andrewm@0
|
516 gRTAudioVerbose = level;
|
andrewm@0
|
517 }
|