Chris@137
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@150
|
2 /*
|
Chris@150
|
3 QM DSP Library
|
Chris@150
|
4
|
Chris@150
|
5 Centre for Digital Music, Queen Mary, University of London.
|
Chris@150
|
6 This file by Chris Cannam.
|
Chris@150
|
7
|
Chris@150
|
8 This program is free software; you can redistribute it and/or
|
Chris@150
|
9 modify it under the terms of the GNU General Public License as
|
Chris@150
|
10 published by the Free Software Foundation; either version 2 of the
|
Chris@150
|
11 License, or (at your option) any later version. See the file
|
Chris@150
|
12 COPYING included with this distribution for more information.
|
Chris@150
|
13 */
|
Chris@137
|
14
|
Chris@137
|
15 #include "Resampler.h"
|
Chris@137
|
16
|
Chris@150
|
17 #include "maths/MathUtilities.h"
|
Chris@150
|
18 #include "base/KaiserWindow.h"
|
Chris@150
|
19 #include "base/SincWindow.h"
|
Chris@150
|
20 #include "thread/Thread.h"
|
Chris@137
|
21
|
Chris@137
|
22 #include <iostream>
|
Chris@138
|
23 #include <vector>
|
Chris@145
|
24 #include <map>
|
Chris@147
|
25 #include <cassert>
|
Chris@138
|
26
|
Chris@138
|
27 using std::vector;
|
Chris@145
|
28 using std::map;
|
Chris@173
|
29 using std::cerr;
|
Chris@173
|
30 using std::endl;
|
Chris@137
|
31
|
Chris@141
|
32 //#define DEBUG_RESAMPLER 1
|
Chris@173
|
33 //#define DEBUG_RESAMPLER_VERBOSE 1
|
Chris@141
|
34
|
Chris@137
|
35 Resampler::Resampler(int sourceRate, int targetRate) :
|
Chris@137
|
36 m_sourceRate(sourceRate),
|
Chris@137
|
37 m_targetRate(targetRate)
|
Chris@137
|
38 {
|
Chris@149
|
39 initialise(100, 0.02);
|
Chris@149
|
40 }
|
Chris@149
|
41
|
Chris@149
|
42 Resampler::Resampler(int sourceRate, int targetRate,
|
Chris@149
|
43 double snr, double bandwidth) :
|
Chris@149
|
44 m_sourceRate(sourceRate),
|
Chris@149
|
45 m_targetRate(targetRate)
|
Chris@149
|
46 {
|
Chris@149
|
47 initialise(snr, bandwidth);
|
Chris@137
|
48 }
|
Chris@137
|
49
|
Chris@137
|
50 Resampler::~Resampler()
|
Chris@137
|
51 {
|
Chris@137
|
52 delete[] m_phaseData;
|
Chris@137
|
53 }
|
Chris@137
|
54
|
Chris@146
|
55 // peakToPole -> length -> beta -> window
|
Chris@156
|
56 static map<double, map<int, map<double, vector<double> > > >
|
Chris@146
|
57 knownFilters;
|
Chris@146
|
58
|
Chris@146
|
59 static Mutex
|
Chris@146
|
60 knownFilterMutex;
|
Chris@146
|
61
|
Chris@137
|
62 void
|
Chris@149
|
63 Resampler::initialise(double snr, double bandwidth)
|
Chris@137
|
64 {
|
Chris@137
|
65 int higher = std::max(m_sourceRate, m_targetRate);
|
Chris@137
|
66 int lower = std::min(m_sourceRate, m_targetRate);
|
Chris@137
|
67
|
Chris@137
|
68 m_gcd = MathUtilities::gcd(lower, higher);
|
Chris@156
|
69 m_peakToPole = higher / m_gcd;
|
Chris@137
|
70
|
Chris@156
|
71 if (m_targetRate < m_sourceRate) {
|
Chris@156
|
72 // antialiasing filter, should be slightly below nyquist
|
Chris@156
|
73 m_peakToPole = m_peakToPole / (1.0 - bandwidth/2.0);
|
Chris@156
|
74 }
|
Chris@137
|
75
|
Chris@137
|
76 KaiserWindow::Parameters params =
|
Chris@156
|
77 KaiserWindow::parametersForBandwidth(snr, bandwidth, higher / m_gcd);
|
Chris@137
|
78
|
Chris@137
|
79 params.length =
|
Chris@137
|
80 (params.length % 2 == 0 ? params.length + 1 : params.length);
|
Chris@137
|
81
|
Chris@147
|
82 params.length =
|
Chris@147
|
83 (params.length > 200001 ? 200001 : params.length);
|
Chris@147
|
84
|
Chris@137
|
85 m_filterLength = params.length;
|
Chris@145
|
86
|
Chris@146
|
87 vector<double> filter;
|
Chris@146
|
88 knownFilterMutex.lock();
|
Chris@137
|
89
|
Chris@156
|
90 if (knownFilters[m_peakToPole][m_filterLength].find(params.beta) ==
|
Chris@156
|
91 knownFilters[m_peakToPole][m_filterLength].end()) {
|
Chris@146
|
92
|
Chris@146
|
93 KaiserWindow kw(params);
|
Chris@156
|
94 SincWindow sw(m_filterLength, m_peakToPole * 2);
|
Chris@146
|
95
|
Chris@146
|
96 filter = vector<double>(m_filterLength, 0.0);
|
Chris@146
|
97 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
|
Chris@146
|
98 sw.cut(filter.data());
|
Chris@146
|
99 kw.cut(filter.data());
|
Chris@146
|
100
|
Chris@156
|
101 knownFilters[m_peakToPole][m_filterLength][params.beta] = filter;
|
Chris@146
|
102 }
|
Chris@146
|
103
|
Chris@156
|
104 filter = knownFilters[m_peakToPole][m_filterLength][params.beta];
|
Chris@146
|
105 knownFilterMutex.unlock();
|
Chris@137
|
106
|
Chris@137
|
107 int inputSpacing = m_targetRate / m_gcd;
|
Chris@137
|
108 int outputSpacing = m_sourceRate / m_gcd;
|
Chris@137
|
109
|
Chris@141
|
110 #ifdef DEBUG_RESAMPLER
|
Chris@173
|
111 cerr << "resample " << m_sourceRate << " -> " << m_targetRate
|
Chris@175
|
112 << ": inputSpacing " << inputSpacing << ", outputSpacing "
|
Chris@175
|
113 << outputSpacing << ": filter length " << m_filterLength
|
Chris@175
|
114 << endl;
|
Chris@141
|
115 #endif
|
Chris@137
|
116
|
Chris@147
|
117 // Now we have a filter of (odd) length flen in which the lower
|
Chris@147
|
118 // sample rate corresponds to every n'th point and the higher rate
|
Chris@147
|
119 // to every m'th where n and m are higher and lower rates divided
|
Chris@147
|
120 // by their gcd respectively. So if x coordinates are on the same
|
Chris@147
|
121 // scale as our filter resolution, then source sample i is at i *
|
Chris@147
|
122 // (targetRate / gcd) and target sample j is at j * (sourceRate /
|
Chris@147
|
123 // gcd).
|
Chris@147
|
124
|
Chris@147
|
125 // To reconstruct a single target sample, we want a buffer (real
|
Chris@147
|
126 // or virtual) of flen values formed of source samples spaced at
|
Chris@147
|
127 // intervals of (targetRate / gcd), in our example case 3. This
|
Chris@147
|
128 // is initially formed with the first sample at the filter peak.
|
Chris@147
|
129 //
|
Chris@147
|
130 // 0 0 0 0 a 0 0 b 0
|
Chris@147
|
131 //
|
Chris@147
|
132 // and of course we have our filter
|
Chris@147
|
133 //
|
Chris@147
|
134 // f1 f2 f3 f4 f5 f6 f7 f8 f9
|
Chris@147
|
135 //
|
Chris@147
|
136 // We take the sum of products of non-zero values from this buffer
|
Chris@147
|
137 // with corresponding values in the filter
|
Chris@147
|
138 //
|
Chris@147
|
139 // a * f5 + b * f8
|
Chris@147
|
140 //
|
Chris@147
|
141 // Then we drop (sourceRate / gcd) values, in our example case 4,
|
Chris@147
|
142 // from the start of the buffer and fill until it has flen values
|
Chris@147
|
143 // again
|
Chris@147
|
144 //
|
Chris@147
|
145 // a 0 0 b 0 0 c 0 0
|
Chris@147
|
146 //
|
Chris@147
|
147 // repeat to reconstruct the next target sample
|
Chris@147
|
148 //
|
Chris@147
|
149 // a * f1 + b * f4 + c * f7
|
Chris@147
|
150 //
|
Chris@147
|
151 // and so on.
|
Chris@147
|
152 //
|
Chris@147
|
153 // Above I said the buffer could be "real or virtual" -- ours is
|
Chris@147
|
154 // virtual. We don't actually store all the zero spacing values,
|
Chris@147
|
155 // except for padding at the start; normally we store only the
|
Chris@147
|
156 // values that actually came from the source stream, along with a
|
Chris@147
|
157 // phase value that tells us how many virtual zeroes there are at
|
Chris@147
|
158 // the start of the virtual buffer. So the two examples above are
|
Chris@147
|
159 //
|
Chris@147
|
160 // 0 a b [ with phase 1 ]
|
Chris@147
|
161 // a b c [ with phase 0 ]
|
Chris@147
|
162 //
|
Chris@147
|
163 // Having thus broken down the buffer so that only the elements we
|
Chris@147
|
164 // need to multiply are present, we can also unzip the filter into
|
Chris@147
|
165 // every-nth-element subsets at each phase, allowing us to do the
|
Chris@147
|
166 // filter multiplication as a simply vector multiply. That is, rather
|
Chris@147
|
167 // than store
|
Chris@147
|
168 //
|
Chris@147
|
169 // f1 f2 f3 f4 f5 f6 f7 f8 f9
|
Chris@147
|
170 //
|
Chris@147
|
171 // we store separately
|
Chris@147
|
172 //
|
Chris@147
|
173 // f1 f4 f7
|
Chris@147
|
174 // f2 f5 f8
|
Chris@147
|
175 // f3 f6 f9
|
Chris@147
|
176 //
|
Chris@147
|
177 // Each time we complete a multiply-and-sum, we need to work out
|
Chris@147
|
178 // how many (real) samples to drop from the start of our buffer,
|
Chris@147
|
179 // and how many to add at the end of it for the next multiply. We
|
Chris@147
|
180 // know we want to drop enough real samples to move along by one
|
Chris@147
|
181 // computed output sample, which is our outputSpacing number of
|
Chris@147
|
182 // virtual buffer samples. Depending on the relationship between
|
Chris@147
|
183 // input and output spacings, this may mean dropping several real
|
Chris@147
|
184 // samples, one real sample, or none at all (and simply moving to
|
Chris@147
|
185 // a different "phase").
|
Chris@147
|
186
|
Chris@137
|
187 m_phaseData = new Phase[inputSpacing];
|
Chris@137
|
188
|
Chris@137
|
189 for (int phase = 0; phase < inputSpacing; ++phase) {
|
Chris@137
|
190
|
Chris@137
|
191 Phase p;
|
Chris@137
|
192
|
Chris@137
|
193 p.nextPhase = phase - outputSpacing;
|
Chris@137
|
194 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
|
Chris@137
|
195 p.nextPhase %= inputSpacing;
|
Chris@137
|
196
|
Chris@141
|
197 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
|
Chris@141
|
198 / inputSpacing));
|
Chris@137
|
199
|
Chris@141
|
200 int filtZipLength = int(ceil(double(m_filterLength - phase)
|
Chris@141
|
201 / inputSpacing));
|
Chris@147
|
202
|
Chris@137
|
203 for (int i = 0; i < filtZipLength; ++i) {
|
Chris@137
|
204 p.filter.push_back(filter[i * inputSpacing + phase]);
|
Chris@137
|
205 }
|
Chris@137
|
206
|
Chris@137
|
207 m_phaseData[phase] = p;
|
Chris@137
|
208 }
|
Chris@137
|
209
|
Chris@173
|
210 #ifdef DEBUG_RESAMPLER
|
Chris@173
|
211 int cp = 0;
|
Chris@173
|
212 int totDrop = 0;
|
Chris@173
|
213 for (int i = 0; i < inputSpacing; ++i) {
|
Chris@173
|
214 cerr << "phase = " << cp << ", drop = " << m_phaseData[cp].drop
|
Chris@173
|
215 << ", filter length = " << m_phaseData[cp].filter.size()
|
Chris@173
|
216 << ", next phase = " << m_phaseData[cp].nextPhase << endl;
|
Chris@173
|
217 totDrop += m_phaseData[cp].drop;
|
Chris@173
|
218 cp = m_phaseData[cp].nextPhase;
|
Chris@173
|
219 }
|
Chris@173
|
220 cerr << "total drop = " << totDrop << endl;
|
Chris@173
|
221 #endif
|
Chris@173
|
222
|
Chris@137
|
223 // The May implementation of this uses a pull model -- we ask the
|
Chris@137
|
224 // resampler for a certain number of output samples, and it asks
|
Chris@137
|
225 // its source stream for as many as it needs to calculate
|
Chris@137
|
226 // those. This means (among other things) that the source stream
|
Chris@137
|
227 // can be asked for enough samples up-front to fill the buffer
|
Chris@137
|
228 // before the first output sample is generated.
|
Chris@137
|
229 //
|
Chris@137
|
230 // In this implementation we're using a push model in which a
|
Chris@137
|
231 // certain number of source samples is provided and we're asked
|
Chris@137
|
232 // for as many output samples as that makes available. But we
|
Chris@137
|
233 // can't return any samples from the beginning until half the
|
Chris@137
|
234 // filter length has been provided as input. This means we must
|
Chris@137
|
235 // either return a very variable number of samples (none at all
|
Chris@137
|
236 // until the filter fills, then half the filter length at once) or
|
Chris@137
|
237 // else have a lengthy declared latency on the output. We do the
|
Chris@137
|
238 // latter. (What do other implementations do?)
|
Chris@148
|
239 //
|
Chris@147
|
240 // We want to make sure the first "real" sample will eventually be
|
Chris@147
|
241 // aligned with the centre sample in the filter (it's tidier, and
|
Chris@147
|
242 // easier to do diagnostic calculations that way). So we need to
|
Chris@147
|
243 // pick the initial phase and buffer fill accordingly.
|
Chris@147
|
244 //
|
Chris@147
|
245 // Example: if the inputSpacing is 2, outputSpacing is 3, and
|
Chris@147
|
246 // filter length is 7,
|
Chris@147
|
247 //
|
Chris@147
|
248 // x x x x a b c ... input samples
|
Chris@147
|
249 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
|
Chris@147
|
250 // i j k l ... output samples
|
Chris@147
|
251 // [--------|--------] <- filter with centre mark
|
Chris@147
|
252 //
|
Chris@147
|
253 // Let h be the index of the centre mark, here 3 (generally
|
Chris@147
|
254 // int(filterLength/2) for odd-length filters).
|
Chris@147
|
255 //
|
Chris@147
|
256 // The smallest n such that h + n * outputSpacing > filterLength
|
Chris@147
|
257 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
|
Chris@147
|
258 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
|
Chris@147
|
259 // phase is 1.
|
Chris@147
|
260 //
|
Chris@147
|
261 // To achieve our n, we need to pre-fill the "virtual" buffer with
|
Chris@147
|
262 // 4 zero samples: the x's above. This is int((h + n *
|
Chris@147
|
263 // outputSpacing) / inputSpacing). It's the phase that makes this
|
Chris@147
|
264 // buffer get dealt with in such a way as to give us an effective
|
Chris@147
|
265 // index for sample a of 9 rather than 8 or 10 or whatever.
|
Chris@147
|
266 //
|
Chris@147
|
267 // This gives us output latency of 2 (== n), i.e. output samples i
|
Chris@147
|
268 // and j will appear before the one in which input sample a is at
|
Chris@147
|
269 // the centre of the filter.
|
Chris@147
|
270
|
Chris@147
|
271 int h = int(m_filterLength / 2);
|
Chris@147
|
272 int n = ceil(double(m_filterLength - h) / outputSpacing);
|
Chris@141
|
273
|
Chris@147
|
274 m_phase = (h + n * outputSpacing) % inputSpacing;
|
Chris@147
|
275
|
Chris@147
|
276 int fill = (h + n * outputSpacing) / inputSpacing;
|
Chris@147
|
277
|
Chris@147
|
278 m_latency = n;
|
Chris@147
|
279
|
Chris@147
|
280 m_buffer = vector<double>(fill, 0);
|
Chris@145
|
281 m_bufferOrigin = 0;
|
Chris@141
|
282
|
Chris@141
|
283 #ifdef DEBUG_RESAMPLER
|
Chris@173
|
284 cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
|
Chris@173
|
285 << ", latency " << m_latency << endl;
|
Chris@141
|
286 #endif
|
Chris@137
|
287 }
|
Chris@137
|
288
|
Chris@137
|
289 double
|
Chris@141
|
290 Resampler::reconstructOne()
|
Chris@137
|
291 {
|
Chris@137
|
292 Phase &pd = m_phaseData[m_phase];
|
Chris@141
|
293 double v = 0.0;
|
Chris@137
|
294 int n = pd.filter.size();
|
Chris@147
|
295
|
Chris@148
|
296 assert(n + m_bufferOrigin <= (int)m_buffer.size());
|
Chris@147
|
297
|
Chris@145
|
298 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
|
Chris@145
|
299 const double *const __restrict__ filt = pd.filter.data();
|
Chris@147
|
300
|
Chris@137
|
301 for (int i = 0; i < n; ++i) {
|
Chris@145
|
302 // NB gcc can only vectorize this with -ffast-math
|
Chris@145
|
303 v += buf[i] * filt[i];
|
Chris@137
|
304 }
|
Chris@149
|
305
|
Chris@145
|
306 m_bufferOrigin += pd.drop;
|
Chris@141
|
307 m_phase = pd.nextPhase;
|
Chris@137
|
308 return v;
|
Chris@137
|
309 }
|
Chris@137
|
310
|
Chris@137
|
311 int
|
Chris@141
|
312 Resampler::process(const double *src, double *dst, int n)
|
Chris@137
|
313 {
|
Chris@141
|
314 for (int i = 0; i < n; ++i) {
|
Chris@141
|
315 m_buffer.push_back(src[i]);
|
Chris@137
|
316 }
|
Chris@137
|
317
|
Chris@141
|
318 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
|
Chris@141
|
319 int outidx = 0;
|
Chris@139
|
320
|
Chris@141
|
321 #ifdef DEBUG_RESAMPLER
|
Chris@173
|
322 cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << endl;
|
Chris@141
|
323 #endif
|
Chris@141
|
324
|
Chris@156
|
325 double scaleFactor = (double(m_targetRate) / m_gcd) / m_peakToPole;
|
Chris@142
|
326
|
Chris@141
|
327 while (outidx < maxout &&
|
Chris@145
|
328 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
|
Chris@142
|
329 dst[outidx] = scaleFactor * reconstructOne();
|
Chris@141
|
330 outidx++;
|
Chris@139
|
331 }
|
Chris@145
|
332
|
Chris@145
|
333 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
|
Chris@145
|
334 m_bufferOrigin = 0;
|
Chris@141
|
335
|
Chris@141
|
336 return outidx;
|
Chris@137
|
337 }
|
Chris@141
|
338
|
Chris@173
|
339 vector<double>
|
Chris@160
|
340 Resampler::process(const double *src, int n)
|
Chris@160
|
341 {
|
Chris@160
|
342 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
|
Chris@173
|
343 vector<double> out(maxout, 0.0);
|
Chris@160
|
344 int got = process(src, out.data(), n);
|
Chris@160
|
345 assert(got <= maxout);
|
Chris@160
|
346 if (got < maxout) out.resize(got);
|
Chris@160
|
347 return out;
|
Chris@160
|
348 }
|
Chris@160
|
349
|
Chris@173
|
350 vector<double>
|
Chris@138
|
351 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
|
Chris@138
|
352 {
|
Chris@138
|
353 Resampler r(sourceRate, targetRate);
|
Chris@138
|
354
|
Chris@138
|
355 int latency = r.getLatency();
|
Chris@138
|
356
|
Chris@143
|
357 // latency is the output latency. We need to provide enough
|
Chris@143
|
358 // padding input samples at the end of input to guarantee at
|
Chris@143
|
359 // *least* the latency's worth of output samples. that is,
|
Chris@143
|
360
|
Chris@148
|
361 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
|
Chris@143
|
362
|
Chris@143
|
363 // that means we are providing this much input in total:
|
Chris@143
|
364
|
Chris@143
|
365 int n1 = n + inputPad;
|
Chris@143
|
366
|
Chris@143
|
367 // and obtaining this much output in total:
|
Chris@143
|
368
|
Chris@148
|
369 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
|
Chris@143
|
370
|
Chris@143
|
371 // in order to return this much output to the user:
|
Chris@143
|
372
|
Chris@148
|
373 int m = int(ceil((double(n) * targetRate) / sourceRate));
|
Chris@143
|
374
|
Chris@173
|
375 #ifdef DEBUG_RESAMPLER
|
Chris@173
|
376 cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << endl;
|
Chris@173
|
377 #endif
|
Chris@138
|
378
|
Chris@138
|
379 vector<double> pad(n1 - n, 0.0);
|
Chris@143
|
380 vector<double> out(m1 + 1, 0.0);
|
Chris@138
|
381
|
Chris@173
|
382 int gotData = r.process(data, out.data(), n);
|
Chris@173
|
383 int gotPad = r.process(pad.data(), out.data() + gotData, pad.size());
|
Chris@173
|
384 int got = gotData + gotPad;
|
Chris@173
|
385
|
Chris@141
|
386 #ifdef DEBUG_RESAMPLER
|
Chris@173
|
387 cerr << "resample: " << n << " in, " << pad.size() << " padding, " << got << " out (" << gotData << " data, " << gotPad << " padding, latency = " << latency << ")" << endl;
|
Chris@171
|
388 #endif
|
Chris@171
|
389 #ifdef DEBUG_RESAMPLER_VERBOSE
|
Chris@173
|
390 int printN = 50;
|
Chris@173
|
391 cerr << "first " << printN << " in:" << endl;
|
Chris@173
|
392 for (int i = 0; i < printN && i < n; ++i) {
|
Chris@173
|
393 if (i % 5 == 0) cerr << endl << i << "... ";
|
Chris@173
|
394 cerr << data[i] << " ";
|
Chris@141
|
395 }
|
Chris@173
|
396 cerr << endl;
|
Chris@141
|
397 #endif
|
Chris@141
|
398
|
Chris@143
|
399 int toReturn = got - latency;
|
Chris@143
|
400 if (toReturn > m) toReturn = m;
|
Chris@143
|
401
|
Chris@147
|
402 vector<double> sliced(out.begin() + latency,
|
Chris@143
|
403 out.begin() + latency + toReturn);
|
Chris@147
|
404
|
Chris@171
|
405 #ifdef DEBUG_RESAMPLER_VERBOSE
|
Chris@173
|
406 cerr << "first " << printN << " out (after latency compensation), length " << sliced.size() << ":";
|
Chris@173
|
407 for (int i = 0; i < printN && i < sliced.size(); ++i) {
|
Chris@173
|
408 if (i % 5 == 0) cerr << endl << i << "... ";
|
Chris@173
|
409 cerr << sliced[i] << " ";
|
Chris@147
|
410 }
|
Chris@173
|
411 cerr << endl;
|
Chris@147
|
412 #endif
|
Chris@147
|
413
|
Chris@147
|
414 return sliced;
|
Chris@138
|
415 }
|
Chris@138
|
416
|