annotate dsp/rateconversion/Resampler.cpp @ 137:dce8337a83c8

First cut at resampler (not quite correct)
author Chris Cannam
date Fri, 11 Oct 2013 18:00:51 +0100
parents
children e89d489af128
rev   line source
Chris@137 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@137 2
Chris@137 3 #include "Resampler.h"
Chris@137 4
Chris@137 5 #include "qm-dsp/maths/MathUtilities.h"
Chris@137 6 #include "qm-dsp/base/KaiserWindow.h"
Chris@137 7 #include "qm-dsp/base/SincWindow.h"
Chris@137 8
Chris@137 9 #include <iostream>
Chris@137 10
Chris@137 11 Resampler::Resampler(int sourceRate, int targetRate) :
Chris@137 12 m_sourceRate(sourceRate),
Chris@137 13 m_targetRate(targetRate)
Chris@137 14 {
Chris@137 15 initialise();
Chris@137 16 }
Chris@137 17
Chris@137 18 Resampler::~Resampler()
Chris@137 19 {
Chris@137 20 delete[] m_buffer;
Chris@137 21 delete[] m_phaseData;
Chris@137 22 }
Chris@137 23
Chris@137 24 void
Chris@137 25 Resampler::initialise()
Chris@137 26 {
Chris@137 27 int higher = std::max(m_sourceRate, m_targetRate);
Chris@137 28 int lower = std::min(m_sourceRate, m_targetRate);
Chris@137 29
Chris@137 30 m_gcd = MathUtilities::gcd(lower, higher);
Chris@137 31
Chris@137 32 int peakToPole = higher / m_gcd;
Chris@137 33
Chris@137 34 KaiserWindow::Parameters params =
Chris@137 35 KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole);
Chris@137 36
Chris@137 37 params.length =
Chris@137 38 (params.length % 2 == 0 ? params.length + 1 : params.length);
Chris@137 39
Chris@137 40 m_filterLength = params.length;
Chris@137 41
Chris@137 42 KaiserWindow kw(params);
Chris@137 43 SincWindow sw(m_filterLength, peakToPole * 2);
Chris@137 44
Chris@137 45 double *filter = new double[m_filterLength];
Chris@137 46 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
Chris@137 47 sw.cut(filter);
Chris@137 48 kw.cut(filter);
Chris@137 49
Chris@137 50 int inputSpacing = m_targetRate / m_gcd;
Chris@137 51 int outputSpacing = m_sourceRate / m_gcd;
Chris@137 52
Chris@137 53 m_latency = int((m_filterLength / 2) / outputSpacing);
Chris@137 54
Chris@137 55 m_bufferLength = 0;
Chris@137 56
Chris@137 57 m_phaseData = new Phase[inputSpacing];
Chris@137 58
Chris@137 59 for (int phase = 0; phase < inputSpacing; ++phase) {
Chris@137 60
Chris@137 61 Phase p;
Chris@137 62
Chris@137 63 p.nextPhase = phase - outputSpacing;
Chris@137 64 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
Chris@137 65 p.nextPhase %= inputSpacing;
Chris@137 66
Chris@137 67 p.drop = int(ceil(std::max(0, outputSpacing - phase) / inputSpacing));
Chris@137 68 p.take = int((outputSpacing +
Chris@137 69 ((m_filterLength - 1 - phase) % inputSpacing))
Chris@137 70 / outputSpacing);
Chris@137 71
Chris@137 72 int filtZipLength = int(ceil((m_filterLength - phase) / inputSpacing));
Chris@137 73 if (filtZipLength > m_bufferLength) {
Chris@137 74 m_bufferLength = filtZipLength;
Chris@137 75 }
Chris@137 76
Chris@137 77 for (int i = 0; i < filtZipLength; ++i) {
Chris@137 78 p.filter.push_back(filter[i * inputSpacing + phase]);
Chris@137 79 }
Chris@137 80
Chris@137 81 m_phaseData[phase] = p;
Chris@137 82 }
Chris@137 83
Chris@137 84 delete[] filter;
Chris@137 85
Chris@137 86 // The May implementation of this uses a pull model -- we ask the
Chris@137 87 // resampler for a certain number of output samples, and it asks
Chris@137 88 // its source stream for as many as it needs to calculate
Chris@137 89 // those. This means (among other things) that the source stream
Chris@137 90 // can be asked for enough samples up-front to fill the buffer
Chris@137 91 // before the first output sample is generated.
Chris@137 92 //
Chris@137 93 // In this implementation we're using a push model in which a
Chris@137 94 // certain number of source samples is provided and we're asked
Chris@137 95 // for as many output samples as that makes available. But we
Chris@137 96 // can't return any samples from the beginning until half the
Chris@137 97 // filter length has been provided as input. This means we must
Chris@137 98 // either return a very variable number of samples (none at all
Chris@137 99 // until the filter fills, then half the filter length at once) or
Chris@137 100 // else have a lengthy declared latency on the output. We do the
Chris@137 101 // latter. (What do other implementations do?)
Chris@137 102
Chris@137 103 m_phase = m_filterLength % inputSpacing;
Chris@137 104 m_buffer = new double[m_bufferLength];
Chris@137 105 for (int i = 0; i < m_bufferLength; ++i) m_buffer[i] = 0.0;
Chris@137 106 }
Chris@137 107
Chris@137 108 double
Chris@137 109 Resampler::reconstructOne(const double **srcptr)
Chris@137 110 {
Chris@137 111 Phase &pd = m_phaseData[m_phase];
Chris@137 112 double *filt = pd.filter.data();
Chris@137 113 int n = pd.filter.size();
Chris@137 114 double v = 0.0;
Chris@137 115 for (int i = 0; i < n; ++i) {
Chris@137 116 v += m_buffer[i] * filt[i];
Chris@137 117 }
Chris@137 118 for (int i = pd.drop; i < n; ++i) {
Chris@137 119 m_buffer[i - pd.drop] = m_buffer[i];
Chris@137 120 }
Chris@137 121 for (int i = 0; i < pd.take; ++i) {
Chris@137 122 m_buffer[n - pd.drop + i] = **srcptr;
Chris@137 123 ++ *srcptr;
Chris@137 124 }
Chris@137 125 m_phase = pd.nextPhase;
Chris@137 126 return v;
Chris@137 127 }
Chris@137 128
Chris@137 129 int
Chris@137 130 Resampler::process(const double *src, double *dst, int n)
Chris@137 131 {
Chris@137 132 int m = 0;
Chris@137 133 const double *srcptr = src;
Chris@137 134
Chris@137 135 while (n > m_phaseData[m_phase].take) {
Chris@137 136 std::cerr << "n = " << n << ", m = " << m << ", take = " << m_phaseData[m_phase].take << std::endl;
Chris@137 137 n -= m_phaseData[m_phase].take;
Chris@137 138 dst[m] = reconstructOne(&srcptr);
Chris@137 139 std::cerr << "n -> " << n << std::endl;
Chris@137 140 ++m;
Chris@137 141 }
Chris@137 142
Chris@137 143 //!!! save any excess
Chris@137 144
Chris@137 145 return m;
Chris@137 146 }
Chris@137 147